International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Regulation Polysulfide Conversion by Flexible Carbon Cloth/Molybdenum Selenide to Improve Sulfur Redox Kinetics in Lithium-Sulfur Battery

Hua Yang¹, Mingshan Wang^{1,*}, Tao Wang¹, Hao Xu¹, Zhenliang Yang², Lei Zhang², Junchen Chen¹, Yun Huang¹, Xing Li^{1,*}

doi: 10.20964/2020.08.72

Received: 5 April 2020 / Accepted: 30 May 2020 / Published: 10 July 2020

Lithium-sulfur (Li-S) batteries have been regarded as a competitive candidate for next generation electrochemical energy-storage technologies. However, the insulation of charge and discharge products (sulfur and lithium sulfide) and the shuttle efforts of lithium polysulfides (LiPSs), result in not only a series of phase conversion but also sluggish redox kinetics in Li-S electrochemistry. Herein, we firstly designed a flexible carbon cloth/molybdenum selenide (CC/MoSe₂) by growing ultra-thin MoSe₂ nanosheets on CC as binder-free electrode to understand the regulation mechanism in Li-S battery. With systematic electrochemical investigation of in-situ deposition Li_2S_8 in CC/MoSe₂, it is found that CC/MoSe₂ exhibits high LiPSs chemical adsorption and electrocatalytic activity, which large enhances the LiPSs conversion. The dynamic regulation of LiPSs change the nucleation and growth of Li₂S, resulting in high uniform distribution on CC/MoSe₂ electrode. Thus, it obtains high sulfur redox kinetics and utilization, which achieves initial capacity of 1142 mAh g⁻¹ with low capacity fade of only 0.038 % per cycle over 500 cycles at 1 C. Even at high S loading (4 mg cm⁻²) and extremely low electrolyte/S (E/S) ratio of 6.2 μ L mg⁻¹, it still delivers 1204 mAh g⁻¹ after 100 cycles at 0.2C with 93.3% capacity maintain.

Keywords: Molybdenum selenide; Binder-free electrode; Lithium sulfide; Lean electrolyte; Lithium sulfur battery

FULL TEXT

¹ School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China

² Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621907, P.R. China

^{*}E-mail: <u>ustbwangmingshan@163.com</u> (M. Wang); <u>lixing198141@163.com</u> (X. Li)

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).