Corrosion Evolution of a Concrete/Casing Steel in Simulated Formation Water under Different CO₂ Partial Pressures

Shuliang Wang¹,³, Mengjun Yao¹, Xujia He¹, Bensong Wu¹, Li Liu¹, Shidong Wang²,³,*, Mingyu Wu³,⁴,*, Xingguo Zhang⁵, Dinghan Xiang⁶

¹ School of New Energy and Materials, Southwest Petroleum University, Xindu Avenue 8#, Sichuan 610500, China
² Northwestern Polytechnical University, Xi’an, 710072, China
³ Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
⁴ School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
⁵ School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, P.R. China
⁶ Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, PR China
*E-mail: shidong@ualberta.ca (S.D. Wang), mingyu8@ualberta.ca (M.Y. Wu)

doi: 10.20964/2020.10.40

Received: 11 June 2020 / Accepted: 1 August 2020 / Published: 31 August 2020

The corrosion behavior, mechanical properties, and microstructural evolution of a concrete/P110 casing steel system were studied in a simulated, CO₂-saturated formation water under different CO₂ partial pressures. It has been found that the corrosion and mechanical properties of the cement and the cement/casing interface were affected by both cement hydration and CO₂ corrosion, making the performance of the cement matrix and the interfacial transition zone improve initially and then deteriorate with time. The corrosion resistance of the casing steel reduced with increasing the immersion time and CO₂ pressure. The degradation of cement and cement/casing interface was aggravated under the high CO₂ pressure, which assisted the formation of a defected corrosion product layer (predominantly FeₓCa₁₋ₓCO₃) and led to severer corrosion on the casing steel surface.

Keywords: Steel; CO₂; Corrosion; EIS; Interfacial transition zone

© 2020 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).