Recent progress in cerium-based nanomaterials for electrochemical biosensors

Xinli Tian¹, Zhongmin Wang¹, Mengkui Ding¹, Shuang Zhou², Ruizhuo Ouyang¹,*, Yuqing Miao¹

¹Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
²Cancer Institute, Tongji University School of Medicine, Shanghai 200092, China
*E-mail: ouyangrz@usst.edu.cn

Received: 19 March 2020 / Accepted: 23 April 2020 / Published: 31 August 2020

Cerium (Ce) is a rare earth element widely used for its excellent physical and chemical properties. Ce-based nanomaterials have become highly relevant for electrochemical biosensors due to their attractive catalytic activities and electrical conductivity properties. Importantly, Ce-based nanomaterial preparation significantly affects their properties for electrochemical applications. This review summarizes some common methods for Ce-based nanomaterial synthesis, including sol-gel, co-precipitation and micro-emulsion approaches, and their applications in electrochemical biosensors, such as DNA sensors, immunosensors and enzyme sensors. Also, we summarize by discussing some defects and complementary methods of Ce-based nanomaterials.

Keyword: CeO₂; Ce-based materials; electrochemical biosensor; preparation method

© 2020 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).