International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Short Communication

A Selective Electrochemical Sensor based on TiO₂/reduced graphene for Efficient Determination of Methanol

Na Dong¹, Bing Gao² Shuai Chen^{3*}

¹ Inner Mongolia Electronic Information Vocational Technical College, Huhhot, 010028, China
²School of Civil Engineering, Jilin Jianzhu University, Changchun, 130118, China
³ Department of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
*E-mail: chen4307@hyit.edu.cn

doi: 10.20964/2021.03.28

Received: 7 April 2020 / Accepted: 26 May 2020 / Published: 31 January 2021

Titanium dioxide (TiO₂) nanoparticles-reduced graphene oxide (rGO) nanocomposite modified glassy carbon electrode (GCE) were produced by drop casting and electrochemical reduction for the sensitive determination of methanol. The as-prepared TiO₂-rGO composite was characterized by X-ray diffraction and scanning electron microscopy. The electro-catalytic performance of electrochemical methanol sensor was evaluated by amperometry and cyclic voltammetry techniques in alkaline media. The electrochemical results indicated that the TiO₂-rGO/GCEs enhanced the electrochemical active surface area for the prepared electrode and significantly improved the electrochemical responses to methanol. This electrochemical methanol sensor revealed excellent stability and reproducibility with 0.7 μ M limit of detection and sensitivity of 0.026 μ A/ μ Mcm² which showed that TiO₂-rGO/GCE electrode had an excellent electro-oxidation to the methanol solution.

Keywords: Titanium dioxide nanoparticles; reduced graphene oxide; Methanol detection; Amperometry technique; cyclic voltammetry

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).