Understanding the Features of Crystal Structure, Electronic Structure and Electrical Conductivity of RuO₂-SiO₂ Binary Oxides

Qifan Wang¹, Yukun Wu¹, Kongfa Chen¹, Na Ai², Xin Wang^{1,*}, Dian Tang^{1,*}

¹ College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
² Testing Center, Fuzhou University, Fuzhou, Fujian 350108, China
*E-mail: <u>xinxinwx@fzu.edu.cn</u> (Xin Wang), <u>tangdian@fzu.edu.cn</u> (Dian Tang)

doi: 10.20964/2021.07.32

Received: 5 February 2019 / Accepted: 25 March 2019 / Published: 31 May 2021

Density functional theory calculations combined with experiments were performed to investigate the stability, crystal structure, electronic structure and conductivity of RuO_2 -SiO₂ binary oxides. Our calculations indicate that $Ru_{1-x}Si_xO_2$ solid solutions are unstable, and both their total energies and lattice parameters deviate from Vegard's law, revealing a strong interaction between RuO_2 and SiO₂. With an increase in *x* (doping concentration of SiO₂), the conductivity of $Ru_{1-x}Si_xO_2$ underwent first-order exponential attenuation, but the compound remained metallic even when *x* was 0.875. $Ru_{0.5}Si_{0.5}O_2/Ti$ electrodes were prepared using the thermal decomposition method, and at different annealing temperatures, varying degrees of phase separation were observed in all the samples, proving the instability of the $Ru_{1-x}Si_xO_2$ solid solutions. The impedance test of the $Ru_{0.5}Si_{0.5}O_2/Ti$ samples showed that the total impedance of the samples and the degrees of phase separation conform to the first-order exponential relationship. The dual effects of Si doping attenuation and phase separation attenuation can explain the rapid decline in the conductivity of the RuO_2 -SiO₂ electrode material.

Keywords: First-principles; RuO₂-SiO₂ binary oxide; crystal structure; phase separation; electronic structures; electrical conductivity

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).