International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Enhanced Visible Light-driven Photocatalytic Activities of Ag₃PO₄ Modified Electrochemically Anodized TiO₂ Nanotube Arrays

Guangxing Ping^{1,2}, Xinyan Wang², Da Chen^{3,*}, Kangying Shu³ Changsheng Li^{1,*}

¹ School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
² College of Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
³ College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
*E-mail: dchen_80@hotmail.com ; lichangsheng@ujs.edu.cn

Received: 1 June 2021 / Accepted: 26 July 2021 / Published: 10 September 2021

In this work, the Ag_3PO_4/TiO_2 nanotube arrays (TNTAs) composite photocatalysts were successfully prepared by a facile chemical impregnation method, and their photocatalytic properties were investigated. It was found that the TNTAs sample, which was prepared by electrochemical anodization, consisted of a highly ordered array of nanotubes with a diameter of about 110 ± 10 nm. For the $Ag_3PO_4/TNTAs$ sample, Ag_3PO_4 nanoparticles (ca. 2~8 nm) were uniformly distributed on the surface of TNTAs. The TNTAs sample mainly absorbed ultraviolet light and rarely visible light. In contrast, the $Ag_3PO_4/TNTAs$ sample absorbed much stronger visible light while maintaining ultraviolet light absorption. More importantly, the visible light photocatalytic activity of $Ag_3PO_4/TNTAs$ for rhodamine B (RhB) degradation was much better than that of TNTAs, and the photodegradation rate constant of $Ag_3PO_4/TNTAs$ was about 2.6 times that of TNTAs. The improved photocatalytic activity of $Ag_3PO_4/TNTAs$ could be attributed to the following two aspects: (1) the loading of Ag_3PO_4 could improve the visible light absorption performance and spectral utilization efficiency of TNTAs; and (2) the heterojunctions formed between Ag_3PO_4 and TNTAs could be beneficial for the separation and transfer of photogenerated charges, which would greatly improve the photocatalytic performance of TNTAs.

Keywords: TiO₂ nanotube arrays (TNTAs); Ag₃PO₄ nanoparticles; Electrochemical anodization; Composite photocatalysts; Photocatalytic activities

FULL TEXT

© 2021 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).