International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Theoretical analysis of reaction-diffusion process in biocatalyst modified electrodes: Solutions derived via Akbari-Ganji method and Taylor's series with Ancient Chinese algorithms

R. Umadevi¹, M. Chitra Devi², K. Venugopal¹, L. Rajendran³, Michael E.G. Lyons^{4,*}

 ¹ PG &Research Department of Mathematics, Government Arts College, Kulithalai Affiliated to Bharathidasan University, Tiruchirappali, India
² Department of Mathematics, Anna University, University College of Engineering, Dindigul, India.
³ Department of Mathematics, AMET(Deemed to be university) chennai, Tamilnadu, India
⁴ School of Chemistry & AMBER National Centre, University of Dublin, Trinity College Dublin, Dublin 2, Ireland

*E-mail: <u>melyons@tcd.ie</u> (Mike Lyons)

Received: 8 February 2022 / Accepted: 22 March 2022 / Published: 5 April 2022

The mathematical modelling of bio-catalytically active chemically modified electrodes, including redox enzymes, is discussed. This model is created on a system of nonlinear reaction-diffusion equations with the Michaelis-Menten kinetics of an enzyme reaction. The present report uses the effective analytical methods known as the latest Akbari-Ganji method and Taylor's series with Ancient Chinese algorithms to solve the nonlinear system. Various parameters and their effects on current density are explored. The concentration and fluxes for steady-state conditions were numerically simulated (Matlab) and compared to the analytical data. It is mentioned that an acceptable agreement was reached.

Keywords: Biosensor, Carbon Nanotube. Akbari-Ganji method, Taylor's series, Ancient Chinese algorithms.

FULL TEXT

© 2022 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).