International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Enhanced Electrochemical Performance of Si-doped LiMn₂O₄ Cathode Material for LiBs Prepared using Mn₃O₄ Octahedrons

Gan Zhu¹, Mingze Qin¹, Tingting Wu^{*}, Mengyuan Zhao, Yansheng Shen, Yu Zhou, Yue Su, Yunhang Liu, Meimei Guo, Yongfeng Li, Hongyuan Zhao^{*}

Research Center for Advanced Materials and Electrochemical Technology, School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China *E-mail: <u>wtingtingwu@163.com</u> (T. Wu), <u>hongyuanzhao@126.com</u> (H. Zhao)

Received: 8 March 2022 / Accepted: 28 March 2022 / Published: 5 April 2022

We proposed a co-modification strategy of Si-doping and octahedral morphology to improve the electrochemical performance of LiMn₂O₄. The Si-doped LiMn₂O₄ sample (LiSi_{0.05}Mn_{1.95}O₄ octahedrons) was prepared by high-temperature solid-state method with Mn₃O₄ octahedrons as manganese precursor and SiO₂ nanoparticles as silicon dopant. XRD and SEM characterization results indicated that the introduction of Si⁴⁺ ions does not produce the substantive impact on the inherent spinel structure of LiMn₂O₄ and LiSi_{0.05}Mn_{1.95}O₄ octahedrons present relatively uniform particle size distribution. When cycled at 1.0 C, LiSi_{0.05}Mn_{1.95}O₄ octahedrons exhibited higher initial reversible capacity than that of the undoped LiMn₂O₄. After 100 cycles, LiSi_{0.05}Mn_{1.95}O₄ octahedrons showed better cycling stability with higher capacity retention rate of 94.7%. Moreover, LiSi_{0.05}Mn_{1.95}O₄ octahedrons presented good rate capability and high-temperature cycling performance. Such good electrochemical performance has much to do with the synergistic modification of Si-doping and octahedral morphology.

Keywords: LiMn₂O₄; Silicon doping; Octahedral morphology; Mn₃O₄ octahedrons; Electrochemical performance

FULL TEXT

© 2022 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).