International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Effect of the hydrothermal synthesis temperature on the capacitive performance of α -MnO₂ particles

Alejandra Marin-Flores, Elsa M. Arce-Estrada, Antonio Romero-Serrano, Alonso Rivera-Benitez, Josué López-Rodríguez, Aurelio Hernández-Ramírez

Instituto Politécnico Nacional-ESIQIE, UPALM, CDMX, México, C.P, 07738 *E-mail: <u>romeroipn@hotmail.com</u>

Received: 15 July 2022 / Accepted: 26 August 2022 / Published: 10 September 2022

A hydrothermal method was used to synthesise α -MnO₂ particles, with manganese sulfate as the metal precursor and potassium permanganate as the oxidising agent. The α -MnO₂ samples synthesised by hydrothermal treatment at 120 °C (α -120) and 140 °C (α -140) for 2 h exhibited different sample morphologies. The sample morphology consisted of a mixture of rose-like microflower and needles, and X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) characterisation and Fourier transform infrared spectroscopy (FT–IR) were carried out on both the α -120 and α -140 samples. The results show that the only MnO₂ phase obtained in the synthesis was α -MnO₂. The electrochemical properties of the samples were analysed by cyclic voltammetry (CV) using a 0.1 M Na₂SO₄ electrolyte solution at scan rates ranging from 5 to 100 mV s⁻¹. The specific capacitance of the system was calculated from the CV curves. The α -120 and α -140 samples had specific surface areas of 128 m² g⁻¹ and 95 m² g⁻¹, respectively, and specific capacitances at a scan rate of 5 mV s⁻¹ of 112.8 F g⁻¹ and 34.86 F g⁻¹, respectively. The specific capacitance decreased as the scan rate increased for both samples.

Keywords: α-MnO₂ particles, average surface area, specific capacitance behaviour

FULL TEXT

© 2022 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).