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An adaptation of the Thomas algorithm is described, that is an alternative to the Rudolph block-  
Thomas algorithm, not using the block vector-matrix technique. This can be used specifically for the 
classic example of a catalytic EC' mechanism if the regeneration reaction is irreversible. 
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1. INTRODUCTION AND THEORY 
      
Until 1991, the simulation of coupled systems, in which electrochemical reactions are coupled with 
homogeneous chemical reactions in such a way that at least some of the relevant partial differential 
transport equations (pdes) contain terms for more than one species, was considered hard. The reason is 
that many such reaction mechanisms lead to thin reaction layers [1], necessitating the use of very small 
spatial intervals near the electrode. This brings with it the need for implicit methods of solution, and so 
the discrete system of equations generated from the pdes became a challenge to solve. Details of this 
problem can be read in [2]. It is best to present an example of such a system, before describing a 
solution to the problem. This system is the application of a Cottrellian potential jump to the catalytic 
reaction pair 
 
                                    A + e  → B 
                                    B → A                                                                                                              (1) 
 
 
This system is of interest in that it is an example of a coupled system, and an analytical solution was 
developed by both Delahay and Stiehl [3] and Miller [4] in the same year (1952). The system is thus a 
good example for testing simulation techniques. The two pdes governing the system are 
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where Xc  is the concentration of species X (that is, A or B), t  is the time, D  is the common diffusion 
coefficient (assumed here for convenience, although the two species can have different diffusion 
coefficients and the analytical solutions allow this), x  is the spatial dimension and k  the forward rate 
constant of the homogeneous chemical reaction, which is considered irreversible. 
        Some normalisation is convenient. Initially, species A is assumed to be present at concentration 

*
Ac , and that of species B to be zero. Let the observation time be τ . Then, 
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This leads to the pair of normalised equations 
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For the Cottrellian potential jump experiment, boundary conditions then are 
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The analytical solution for the dimensionless current is then [3, 4] 
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Unequal spatial intervals must be used because of the reaction layer, and any convenient spacing 
sequence can be used, such as Feldberg's exponentially expanding sequence [5], giving a sequence of 
X  positions 11,0 ,,, +NN XXXX … , where NX   is the maximum distance at which there can 

be significant diffusional changes; in the dimensionless units used, this is equal to max6 T  [2], with 

maxT  being the maximum time simulated to. The point at 1+NX  then lies in the bulk, where the initial 

bulk concentrations hold throughout. The exponentially expanding sequence of intervals H is given by 
 
 1−= ii HH γ  (7) 

 
giving 
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(Feldberg expresses it differently, in terms of positions of box ends, but point positions are used here); 
γ  is the expansion factor, which normally lies between unity and 2. Other sequences can be used but 
this one is convenient. It is normally generated on the basis of a desired value of 1X , the position of              
the point nearest to the electrode, and the desired number of internal points N . An algorithm for 
evaluating γ, given these two parameters, has been described [2, p.302]. A Fortran 95 function 
EE_FAC has been written for the calculation. 
            The spatial second derivative discretisation is performed directly on the unequal grid. Several 
authors have produced formulae for this [2,7,8], and a general algorithm has been described [6] which 
can deliver the coeffcients as well as derivative values for first or second derivatives on a number of 
points, located at any of them. Here, we need the form ''

2 (3)u , that is, the second derivative located at 
the second of three points. In the present author's terminology, at the point iX , 
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The α  values are dependent on the index i . The time derivative discretisation depends on the 
algorithm to be used in the simulation. Three such are considered here. For the Laasonen method [9], 
also called BI (for backward implicit) and the Crank-Nicolson method [10], the same discrete 
expression results: 
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where 'C  is the new value of concentration to be calculated at time TT δ+ , Tδ  being the time 
interval. If BDF [2, 11] is to be used, the three-point variant is probably optimal, as it has been shown  
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[12] that the simplest starting procedure, in which the present and past concentration rows initially 
both are set at the initial values, and the values of T  corrected at each iteration by subtracting 2/Tδ , 
is about optimum for this method. This rather arbitrary correction procedure has been shown to be 
mathematically justified [13, 14]. This makes the method second order with respect to Tδ  and using 
more points for BDF does not increase the order, unless a high-order but inefficient starting procedure 
is used [12]. So, using the three-point variant, we have 
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where C'  now represents the (known) value at TT δ− . 
            Using the above discretisations and rearranging the resulting equations, we arrive at the general 
pair of discrete equations at point i  for all three implicit methods 
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with the coefficients on the left-hand side and the b -terms on the right-hand sides given in Table 1. 
Because of the coupled nature of (12), the system, and others like it, appeared intractable, unless very 
long computing times were used. In the Rudolph method, the two equations are gathered into a single 
one in terms of vectors and matrices, resulting in a block-tridiagonal system. This was introduced to 
electrochemical simulations by Rudolph [15]. Others had in fact used the technique earlier [16, 17], 
but it became widely known only after Rudolph's paper. Recently, Bieniasz described a block-Thomas 
adaptation for a more complex system that is mostly blocktridiagonal but with isolated pentadiagonal 
rows [18]. For a description of Rudolph's method, see [15] or a recent simulation text [2]. It involves 
inversion of a number of matrices and matrix-vector multiplications, and the method has the useful 
feature of being generalisable for general mechanisms with an arbitrary number of species. 
            For the particular mechanism under discussion here, there is a simpler method, based on a 
modification of the Thomas algorithm for uncoupled systems. The usual citation for the Thomas 
algorithm is the book by Thomas [19], but this seems inaccessible now; a description by Bruce et al. 
[20] may be the earliest accessible description of the standard Thomas algorithm, see also [2]. It will 
here be combined with another trick, for handling boundary conditions, called the “u-v mechanism” by 
the present author, and mentioned in previous papers [21,22]. The aim of this paper is to detail this 
procedure, which avoids vector-matrix manipulation. 
         Consider the equation pair (12) at the point Ni = : 
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Table 1: Table of coefficients and right-hand sides for the methods BI (Laasonen), Crank-Nicolson 
(CN) and 3-point BDF. 
Coeff BI CN BDF 
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Values at 1+N  are known bulk values, and we can rewrite the equations in reduced form, 
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We proceed first with species B. Its equation is now written as 
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Also, we can write from (15) 
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which we insert in the equation for B at 1−= Ni , 
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which, after some gathering of terms, leads to 
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This process is continued backwards, generating equations such as 
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The recursive process halts at the equation for 1=i , 
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Now the u-v mechanism is applied. Formally, we write 
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and we can now write all '

,iBC  in terms of '
0,BC , 
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with the recursive expressions 
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           We still do not know '

0,BC  but can substitute it for all '
,iBC  values, as in (28). We now turn to 

species A, and again start with the equation at Ni = : 
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and again, in similar manner, rewrite it as 
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(note now the presence of the term for species B), with 
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Note the terms NBu ,  and NBv , , arising from substituting (28) for Ni = . This process leads to the 

general reduced equation for A at index i , 
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As with species B, this is developed backwards down to 1=i , where 
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        We can now apply the boundary conditions (5), discretising fluxes (concentration gradients) as 
n -point approximations on the unequal grid [2] as the )1('

1 −nu  form 
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For this, u and v  are needed for A as well. Similar manipulation, as for species B yields the general 
substitution 
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for which the recursive expressions are 
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starting with 
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Discretising both boundary conditions that are needed, we have 
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and by substituting for all concentration terms, using (28) and (41), as well as for the known (zero) 
value of  '

0,AC , we have 
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from which '

0,BC  is calculated. All other concentrations now are readily obtained by recursive use, 

going forward, of (35) and (23). 
             Alternatively, the Nernst condition or a Butler-Volmer condition can be applied, both of which 
lead in an obvious manner to a system of two equations, still readily handled, but in these cases no 
analytical solutions are available for comparison. 
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2. COMPUTATIONAL 
 
       Programming was in Fortran 95, using the Intel compiler 9.0. At least 14 decimals were specified 
throughout, and computations were performed on a Personal Computer running Linux. Performance 
was expressed as the logarithm of the relative error in current: 
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I
II

e
−
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where simI  is the simulated current, and analI  the analytical solution (6). 
 
 
3. RESULTS AND DISCUSSION 
     
           Both the above treatment, as well as the equivalent Rudolph treatment, have been programmed 
and results were identical for all three implicit methods considered. Also, computer times were very 
similar, so the above algorithm cannot be said to significantly reduce computing time. It is, however, 
the impression of the author, that it is simpler to implement in a program than the Rudolph matrix-
vector method, where largish arrays of vectors and matrices need to be stored. 
         Fig. 1. shows some performance curves, in terms of the error e as a function of the number of 
steps in T  up to 1=T , given a fixed grid of 50 points, starting at 01.01 =X . BDF was started simply, 

and all times corrected by Tδ
2
1 , as outlined above. 

 
Figure 1: Errors as in equation (48) for the methods BI, CN and BDF as marked. In all but one curve, 

50=XN  and 01.01 =X , making  081.1=γ . Curve CN+4 was Crank-Nicolson but starting with 4 BI 
steps to eliminate oscillations. 
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        It is seen that BI, at least at low values of TN , behaves as expected, in a roughly first-order 
manner, )( TO δ . The BDF curve does behave roughly as )( 2TO δ  as expected, but only at the low end 
of TN , for the first two measured points, but then levels off. CN does not behave as expected in a 
second-order manner in any TN  range, with or without the BI start. The CN curve clearly shows large 
errors over most of the range, due to oscillations known from CN. These can be damped by several    
means [23], and the curve marked as CN+4 shows the result for runs starting with 4 BI steps, clearly 
an improvement. In fact, this removed the oscillations near the target end time 1=T  entirely. The ratio 

2/ HTδλ =  plays a crucial role in the oscillations, and for 1<λ  or so, none is seen. In this context, 
H  is the smallest distance from the electrode, here equal to 0.01, so even for 1000=TN , we have a λ  
value equal to 10, still causing some oscillations without the damping start. The higher-order methods 
are seen to level out to a constant relative log-error of about -3.4, independent of Tδ  at higher values 
of TN . 
 
 
4. CONCLUSIONS 
 
        The Thomas-like algorithm is seen to produce the same results as the block-tridiagonal Rudolph 
method, and is simpler to program. The higher-order methods, if suitably implemented, show 
satisfactory error levels at modest parameter choices. For example, 100 steps in time can bring the 
relative error down to below 0.1%. Suitable implementation here means the simple start for BDF, 
subtracting half a time interval at each time or, for CN, starting the simulation with 4 BI steps, to damp 
oscillations. The algorithm can be used for several boundary conditions, such as Cottrellian as applied 
here and for which there is an analytical solution, or a Butler-Volmerian or Nernstian condition, for 
which no analytical solutions are known. Thus, this method can also be used for LSV simulations. This 
however only applies to the particular mechanism described here, and the method is not general, as 
the Rudolph method is. 
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