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The Stern model of electric double layer created at the contact of charged surface with electrolyte 

solution is modified by taking into account potential (voltage) dependence of relative permittivity in 

Stern layer due to orientational ordering of water dipoles in saturation regime. In addition, different 

sizes of hydrated anions and cations in electrolyte solution are taken into account by different values of 

distance of closest approach for both kind of ions. We showed that the proposed modifications enable 

us to predict the experimentally observed asymmetry of camel-like shape of the double layer 

capacitance dependence on the electrode potential.  
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1. INTRODUCTION 

Within the classical Poisson-Boltzmann (PB) models of electrolyte solution in contact with 

charged surface [1, 2, 3, 4, 5, 6, 7], the ions in electrolyte solution were treated as dimensionless. Stern 

was the first [8] who attempted to incorporate the finite size of ions in PB models by assuming the 

distance of closest approach of counter-ions to the charged surface [9, 10, 11] (see Figure 1). 

More sophisticated approach to take into account the finite size of ions in electrolyte solution 

being in contact with charged surface was introduced by Bikerman [12]. Different other generalized 

PB models to describe the finite size of ions were introduced also later [13, 14, 15, 16, 17, 18]. Also 

more recently, the finite size of ions and excluded volume effect were incorporated into generalized 

PB theory by using the lattice statistics approach [19, 20], by functional density approaches [21, 22, 
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23] and by a modified PB theory where the ions and solvent molecules were treated as hard spheres 

[24, 25, 26]. 

The majority of the theoretical models of electrolyte solution in contact with charged surface 

involve the assumption that the relative (dielectric) permittivity is constant everywhere in the 

electrolyte solution [5, 7, 19, 27, 28, 29] and do not consider spatial decay of relative permittivity in 

close vicinity of the charged surface [7, 30, 31, 32]. Therefore the classical PB theories [6, 29, 30] has 

been generalized by taking into account the water polarization in electrolyte solution resulting in 

decrease of relative permittivity near the charged surface in saturation regime of water dipole 

orientation [7, 24, 25, 26, 27, 32, 33, 34]. Taking into account the space dependence of permittivity 

close to the charged surface and the excluded volume effect within generalized PB approach [7, 35] 

result in theoretical prediction of so-called camel (saddle-like) shape of differential capacitance voltage 

dependence which was observed also experimentally [36, 37, 38], in Monte-Carlo simulations [39] and 

in molecular dynamic simulations [39]. 

Symmetric camel-like profile of differential capacitance may also be predicted by considering 

the finite size of ions only [5, 7, 31], i.e. without taking into account the space variation of permittivity 

near the charged surface. The predicted capacitance curves are symmetric (camel-like) with respect to 

zero potential [7, 31]. The symmetric camel-like double layer differential capacitance can be calculated 

also within simple Stern model by taking into account the decrease of permittivity in Stern layer and 

non-zero distance of closest approach for counter-ions [11]. 

On the other hand, the asymmetric double layer differential capacitance curve was predicted 

within modified lattice statistics PB approach of  Kralj-Iglič and Iglič from 1996 [19] (the same lattice 

statistics model as presented by [19] was published later in 1997 also by [40]) as performed recently in 

[41] if different size of negatively and positively charged hydrated ions in electrolyte solution is taken 

into account within the lattice model. In [41] the double layer differential capacitance curve becomes 

asymmetric due to decrease of capacitance for positive values of voltage relative to the corresponding 

capacitance values for negative values of voltage. This is however  not always the case in experiments 

(see for example [36]), where the measured differential capacitance for positive values of voltage may 

be higher than the capacitance for negative values of voltage.  

Far from the charged plane the electrostatic field does not depend on the size of  hydrated ions 

[42]. On the other hand, in the vicinity of the charged plane the counter-ions are accumulated while the 

co-ions are scarce. The influence of the counter-ions contained in the region close to the charged plane 

on the electrostatic field is the most important one [42]. To this end in this work, to account for 

different sizes of the hydrated ions in electrolyte solution [43, 44], we assume different values of the 

distance of closest approach for cationic and anionic counter-ions, respectively (see Figure 1). In the 

case of negatively charged surface the distance of closest approach b is adapted to positively charged 

counter-ions (Figure 1A), while in the case of positively charged surface the parameter b describes the 

distance of closest approach for negatively charged counter-ions (Figure 1B). It will be shown in the 

present paper that the double-layer differential capacitance curve becomes asymmetric when different 

values of closest approach are used for negatively and positively counter-ions and the potential 

(charge) dependent permittivity in Stern layer is taken into account  [11]. 
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Figure 1. Distance of closest approach (b) in the case of negatively (A) and positively charged planar 

surface (B). In the first case (A) the distance of closest approach is defined by the radius of the 

hydrated cations (bcation), while in the second case (B) the distance of closest approach is 

defined by the radius of hydrated anions (banion).   

 

 

 

2. MODELS AND METHODS   

 
Figure 2. Graphical presentation of Stern and diffuse electric double layer in the case of negatively 

charged planar surface (σ < 0). Outer Helmholtz plane (OHP) is located at the distance of 

closest approach (x = b) which is equal to hydration radius of counter-ions (cations).   
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In this work we adopted Stern model as a combination of Gouy-Chapman (GC) and Helmholtz 

models where the outer Helmholtz plane (OHP) define a border between Stern layer and diffuse layer 

[11] (Figure 2). Within such a model the differential capacitance ( diffC ) can be calculated as follows 

[38]: 

1 1 1

diff S DLC C C
        ,                                                              (1) 

where (CS) is the capacitance of Stern layer and (CDL) is the capacitance of diffuse layer (see 

Figure 2). 

Capacitance of Stern layer (CS) is equal to capacitance of parallel plate capacitor [45]:  

0 ,S
SC

b

 


                                                                                         (2)
 

where ε0 is dielectric constant, εS is relative permittivity of Stern layer and b is the distance of 

closest approach. Within GC model the capacitance of diffuse layer (CDL) is [7, 30, 38]: 

 
1/2

2

0 0 0 02 cosh( ( ) / 2)
( )

DL r

d
C e n e x b

d x b


    


  


       ,                        (3)                               

where σ is surface charge density, ϕ is the electric potential at the distance of closest approach 

at x = b, e0 is unit charge, n0 is bulk number density of ions, β = 1/kT, kT is thermal energy, ε0 is 

permittivity of vacuum and εr is relative permittivity of diffuse layer (b ≤ x < ∞). Total differential 

capacitance  ( diffC ) is therefore: 
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Stern model assumes that εS and εr are constant. For simplicity reasons εr in diffuse layer is 

considered as constant value, but due to the dependence of relative permittivity (εS) on surface charge 

density (σ), the relative permittivity (εS) is calculated as follows. Water molecule as a sphere with 

permanent point-like dipole moment in the centre of the sphere (p0) and with relative dielectric 

permittivity equal to the square of refractive index of water (n
2
) [32], the vector of polarization of 

water molecules in Stern layer (0 ≤ x < b) can be written as [7, 32, 46]: 
2

0 0 0
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where n0w is number density of water molecules, E is magnitude of the electric field strength, n 

is optical refractive index of water,  p0 is the magnitude of water external moment, L  is Langevin 

function and γ =(2 + n 2)/2. Relative permittivity in Stern layer (εS) is therefore [11, 47]: 
2
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The capacitance of Stern layer (0 ≤ x < b) can be therefore written as [11]: 
2
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For relative permittivity outside the Stern layer (εr) we assume constant value εr = 78.5 at room 

temperature. The relative permittivity within the Stern layer is calculated from Equation 6, where the 
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magnitude of electric field in Stern layer is calculated from boundary condition at the charged surface 

(see also [11]): 
2
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The electric potential dependence in the diffuse region (x ≥ b) is calculated from Gouy- 

Chapman equation [1, 2, 6] as described in [11]. 

 

 

 

3. RESULTS AND DISCUSSION 

Differential capacitance ( diffC ) as a function of the potential at planar charged surface (x = 0) 

(voltage), calculated for different values of the distance of closest approach b, can be seen in Figure 3. 

In the case of negative potentials (ϕ < 0) at planar surface (x = 0), where high accumulation of cations 

and depletion of anions in the close vicinity of the charged planar surface take place, the distance of 

closest approach is defined by the radius of hydrated cations (b ≈ bcation) (Figure 1A). On the contrary, 

in the case of positive potentials (ϕ > 0) at planar surface (x = 0), where high accumulation of anions 

near the charged planar surface and simultaneous strong depletion of cations [43, 44], the distance of 

closest approach is approximated by the radius of the hydrated anions (b ≈ banion) (Figure 1B) (see also 

[42]). As hydrated radius of cations is assumed to be greater than hydrated radius of anions [43, 44], 

the surface potential at x = 0 is higher for negatively charged surface (σ < 0), therefore Cdiff  values are 

greater.           

 

 
 

Figure 3. Differential capacitance (Cdiff) as a function of the potential at planar charged surface 

calculated for different values of b: 0.35 nm (A), 0.30 nm (D), 0.25 nm (E), 0.40 nm (B) and 

0.45 nm (C). Other model parameters are: bulk concentration of ions n0/NA = 0.1 mol/l, p0 = 3.1 

Debye, concentration of water n0w/NA = 55 mol/l and T = 298 K. 
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4. CONCLUSION 

We have studied the differential capacitance within Stern model where the different sizes of 

hydrated cations and anions in electrolyte solution are taken into account by different values of the 

distance of closest approach for cations and anions. The strong dependence of the relative permittivity 

in Stern layer on the surface potential is also taken into account in the presented theoretical model. It is 

shown that these two assumptions of presented simple theoretical model may qualitatively describe 

some characteristics of the experimentally observed asymmetric camel-like dependence of differential 

capacitance [36, 37, 38]. In the future the described model should be upgraded by taking into account 

the excluded volume effect within GI model [7, 32], modified by taking into account different size of 

ions not only by different distance of closest approach for anions and cations, but also in lattice 

statistics where different kind of ions (anions and cations) occupy different number of lattice cells or 

alternatively by allowing several ions to be in single lattice cell [41, 48].                  
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