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Microbial fuel cell is a kind of promising new source of green energy. Because of its complicated 

reaction mechanism and its inherent characteristics of time-varying, uncertainty, strong-coupling and 

nonlinearity, there are complex control challenges in modelling and control of microbial fuel cells. 

This paper studies on performance improvement of microbial fuel cells by the approach of model 

predictive control. A numerical simulation platform for microbial fuel cell is established, and a 

traditional model predictive controller is designed for MFC first; then model predictive controllers 

which use Laguerre function and exponential data weighting are designed subsequently to compare 

with the traditional model predictive controller. Simulation results show that the proposed improved 

model predictive controller modified by exponential data weighting can give the system both good 

steady-state behavior and satisfactory dynamic property. 

 

 

Keywords: Microbial fuel cell; model predictive control; exponential data weighting; constant voltage 

transmission 

 

 

1. INTRODUCTION 

Energy resource is an important material basis for the survival and development of human 

society [1, 2]. Conventional fossil fuels have been largely used and are gradually dying up. Meanwhile, 

massive environmental pollution has been brought on by productive gaseous and solid waste when 

conventional fossil fuels are burned in the process of power generation [3]. Therefore, there is an 

increasing need for renewable energy in our society, pollution-free energy sources with high energy 

conversion efficiency and null pollutant emissions are attempted to explore and exploit [4]. 

A microbial fuel cell (MFC) is a bio-electrochemical system that drives a current by mimicking 

bacterial interactions found in nature. Microbial fuel cell is considered to be a promising sustainable 
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technology to meet increasing energy needs. Microbial fuel cells have many potential advantages over 

traditional methods of generating electricity [5]. The great advantage of the microbial fuel cell is the 

direct conversion of organic waste into electricity. It enables high conversion efficiency and efficient 

operation at ambient. Microbial fuel cell has current and potential uses in wastewater treatment, 

desalination, hydrogen production, remote sensing, pollution remediation, and as a remote power 

source [6]. The applications of MFCs will help to reduce the use of fossil fuels and allow for energy 

gain from wastes, and they will help to bring the world to become a sustainable and more eco-friendly 

place [7]. 

MFCs are complex biological electrochemical reaction systems. Many factors such as 

environmental temperature, substrate concentration, biological environment and load disturbance will 

have a significant impact on its performance [8, 9]. Therefore, before put it into a large number of 

applications, some problems of microbial fuel cell such stability, reliability, electricity production 

efficiency must be solved first.  

The complexity of a microbial fuel cell makes it difficult to improve its performance. So far, 

almost all researches on microbial fuel cells are still focused on the structure or material option of the 

microbial fuel cell itself, to realize performance optimization by controlling is rarely considered. 

Advanced control technology is an alternative solution to optimize the performance of the microbial 

fuel cell. Model predictive control (MPC) is an optimization strategy for the control of constrained 

dynamic systems. It is an effective method to solve complex industrial process control [10, 11].  

Model predictive controller is considered to control the MFC to maintain a constant output 

voltage in our work. This paper is organized as follows. The mathematical model for a typical 

microbial fuel cell is described in Section 2. Section 3 presents a brief description of designing three 

kinds of model predictive controllers for MFC. Simulation results are presented in section 4 to confirm 

the effectiveness and the applicability of the proposed method. Finally, our work of this paper is 

summarized in the last section. 

 

 

 

2. MODEL OF A MICROBIAL FUEL CELL 

Electricity generation in MFCs has been modelled by a few researchers. Picioreanu et al 

described the integration of IWA’s anaerobic digestion model (ADM1) within a computational model 

of microbial fuel cells [12]. Pinto et al presented a two-population model describing the competition of 

anodophilic and methanogenic microbial populations for a common substrate in a microbial fuel cell 

[13]. Picioreanu et al described and evaluated a computational model for microbial fuel cells based on 

redox mediators with several populations of suspended and attached biofilm microorganisms, and 

multiple dissolved chemical species [14]. Kato et al developed a one-dimensional, multi-species 

dynamic model for the biofilm of the microbial fuel cell [15]. These models are concentrated on bio-

catalytic activities. Complexity of the system and involvement of many model parameters causes poor 

accuracies in the suggested model. 

Zeng and his research team applied themselves to develop a MFC model similar to that for 

chemical fuel cells. By integrating biochemical reactions, Butler–Volmer expressions and mass/charge 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

739 

balances, a MFC model based on a two-chamber configuration is developed to simulates both steady 

and dynamic behavior of a MFC, including voltage, power density, fuel concentration [16]. This is a 

comprehensive model for a two-chamber microbial fuel cell. So, the simulation platform in this paper 

is established mainly based on Zeng’s MFC model, and some modelling methods described in some 

other references are used for making some modification [17, 18]. 

The origin of voltage in MFC can be understood by considering the chemical reactions 

occurring at cathode and anode compartments given as follows 
+ -

2 2 2 2(CH O) +2H O 2CO +8H +8e (Anode)                                (1) 
- -

2 2O +4e +2H O 4OH (Cathode)
 
                              (2) 

The reaction rates of the anode and cathode chamber can get by Butler-Volmer expression: 

0 AC
1 1 a

AC AC

= exp( )
CF

r k X
RT K C





                                  (3) 

2

2 2

O0

2 2 c

O O

exp[( 1) ]
C F

r k
K C RT

   


                             (4) 

in which F is the Faraday constant; R is the gas constant; T is the cell operating temperature; 

CAC and X are the concentrations of acetate and biomass in the anode compartment, respectively; 
2OC is 

the concentration of dissolved oxygen in the cathode compartment; ηa is the anodic over potential; ηc is 

the over potential at the cathode; α is the charge transfer coefficient of the anodic reaction; β is the 

charge transfer coefficient of the cathodic reaction; 0

1k  is the rate constant of the anode reaction at 

standard conditions (maximum specific growth rate); 0

2k  is the rate constant of the cathode reaction 

under standard conditions; KAC is the half velocity rate constant for acetate; KO2 is the half velocity rate 

constant for dissolved oxygen. Water concentration is assumed constant. 

Assuming that both the anode and cathode compartments can be treated as a continuously 

stirred tank reactor, the mass balances of the four components in the anode can be described as 

inAC
a a AC AC m 1

d
( )

d

C
V Q C C A r

t
                                      (5) 

inCO2
a a CO2 CO2 m 1

d
( ) 2

d

C
V Q C C A r

t
                                  (6) 

inH
a a H H m 1( ) 8

dC
V Q C C A r

dt
                                       (7) 

in

a a m ac 1 a dec

x

d
( )

d

X X X
V Q A Y r V K X

t f


                                 (8) 

The charge balances at the anode can be described as 

a
a cell 1

d
3600 8

d
C i Fr

t


                                      (9) 

The mass balances in the cathode can be described as 

2

2 2

O in

c a O O m 2

d
( )

d

C
V Q C C A r

t
                                           (10) 

inOH
c a OH OH m 2

d
( ) 4

d

C
V Q C C A r

t
                                        (11) 

inM
c c M M m M

d
( )

d

C
V Q C C A N

t
                                         (12) 

The charge balances at the anode can be described as 

c
c cell 2

d
3600 4

d
C i Fr

t


                                              (13) 
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In the above equations, the subscripts ‘a’, ‘c’, and ‘in’ denote the anode, the cathode and the 

feed flow, respectively. V, Q and Am are the volume of the compartment, the feed flow rate, and the 

cross-section area of membrane, respectively; fx represents the reciprocal of the wash-out fraction, Yac 

is the bacterial yield, and Kdec is the decay constant for acetate utilisers. CM is the concentration of M
+
 

ions and NM is the flux of M
+
 ions transported from the anode to cathode compartment via the 

membrane, icell is the current density.  

If the ohmic drops in the current collectors and electric connections are negligible, and the cell 

resistance is solely due to the resistances of the membrane and the solution, then the output voltage Vfc 

of MFC can be defined as 
0

fc a c ohmV U                                                    (14) 

in which U
0
 is the cell open circuit potential. The ohmic drops can be described as 

m cell

ohm cellm aq
( )
d d

i
k k

                                                (15) 

where d
m

 is the membrane thickness, k
m

 is the electrical conductivity of membrane, k
aq 

is the 

electrical conductivity of the aqueous solution and d
cell

 is the distance between anode and cathode in 

the cell.  

Thus the main processes of the microbial fuel cell are modeled. Based on the above described 

mathematical model, a Matlab/Simulink simulation model of a two-chamber microbial fuel cell is set 

up, and it can be used to simulate the running states of a microbial fuel cell in various conditions. Main 

parameters used in the simulation model are given in Table 1. 

 

 

 

3. MPC AND ITS IMPROVEMENT FOR MFC 

In order to design a MPC controller for the microbial fuel cells, a basic increment-input-output 

model such as the following equation is considered to be used in the designing process. 
( 1) ( )

m mm

m m m m

m

m

( 1) 1 ( )
( )

( 1) ( )

( )
( ) [1  ]    

( )

x k x k BA

m

T

C

C By k C A y k
u k

x k A O x k B

y k
y k O

x k



       
        

         

 
  

 

                       (16) 

in which ( )u k is defined as 
1( ) ( ) ( 1) (1 ) ( ) ( )u k u k u k q u k qu k                                    (17) 

and q denotes a forward shift operator, 1(1 )q q    denotes the increment operator. 

The main reason for using an increment-input-output model is that the controller designed on 

the basis of the increment-input-output model has good steady-state behaviour. However, when predict 

horizon is long, or in the case of rapid sampling, complicated process dynamics or high demands on 

closed-loop performance, satisfactory approximation of the control signal requires a very large number 

of forward shift operators, and leads to poorly numerically conditioned solutions and heavy 

computational load when implemented on-line.  
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Table 1. Model parameters 

 

Symbol Unit Value 

F Coulombs mol
-1

 96485.4 

R J mol
-1

K
-1

 8.3144 

T K 303 

k
m

 Ohm
-1

m
-1

 17 

d
m

 m 1.778×10
-4

 

k
aq

 Ohm
-1

m
-1

 5 

d
cell

 m 0.022 

Ca Fm
-2

 400 

Cc Fm
-2

 500 

Va m
3
 5.5×10

-5
 

Vc m
3
 5.5×10

-5
 

Am m
2
 5×10

-4
 

Yac Dimensionless 0.05 

Kdec h
-1

 8.33×10
-4

 

fx Dimensionless 10 

Qa m
3
h

-1
 2.25×10

-5
 

Qc m
3
h

-1
 1.11×10

-3
 

in

ACC  molm
-3

 1.56 
in

CO2C  molm
-3

 0 

Xin molm
-3

 0 
in

HC  molm
-3

 0 

2

in

OC
  

molm
-3

 0.3125 
in

MC  molm
-3

 0 
in

OHC  molm
-3

 0 
 

In order to overcome these shortcomings in conventional MPC, MPC with laguerre and 

exponential data weighting function are designed and compared for the two-chamber MFC. The z-

transforms of the discrete-time laguerre networks have the following relationship [19-21]
 

   
1

1 11
k k

z a
z z

az



 


  


                                            (18) 

where a is the scaling factor, N is the number of terms, k is from 1 to N and 0 ≤ a < 1 for 

stability of the network. Let li(k) denote the inverse z-transform of ( , )i z a , in which i is from 1 to N. 

This set of discrete-time laguerre functions are expressed in a vector form as L(k)=[l1(k), l2(k),…, 

lN(k)]
T
, and the laguerre sequences can be computed as: 

( 1) ( )L k HL k                                                   (19) 

in which 

2

2 3

2 2 3 N-3 1 1

0 0 0 0 1

0 0 0

0 0
(0)

0

( 1) ( 1) ( 1)N N N N N

a

a a

a a a
H L

a a a a

a a a a



 


  

      

   
   

   
   

    
    

   
           

，        (20) 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

742 

and 21 a   . The expression of Laguerre function is a simple one which can make 

programming easier and reduce the calculating burdens; besides, it has a good effect on the 

parameterization, hence reduces the number of parameters required in modelling the control trajectory. 

At time ki, the control trajectory ( ),  ( 1),  i iu k u k   ( 2),iu k  … ( )iu k k  … is regarded as the impulse 

response of a stable dynamic system. Thus, it can be approximated by a discrete polynomial function. 

Laguerre function is famous for its orthogonality, so ( )u k  can be obtained by using Laguerre function. 

What’s more, when the scaling factor is chosen at 0, the laguerre functions are equal to the expression 

of the traditional control variable, which is to say, Laguerre functions control strategy include the 

traditional MPC strategy. More precisely, at an arbitrary future sample instant k, 

i j i j

1

( ) ( ) ( )
N

j

u k k c k l k


                                              (21) 

with ki  being the initial time of the moving horizon window and k being the future sampling 

instant. N is the number of terms used in the expansion, cj (j=1, 2, . . . , N) are the coefficients, and they 

are functions of the initial time of the moving horizon window ki. Let T

1 2[ ]Nc c c  , and 
T

i( ) ( )u k k L k     can be obtained. 

The traditional predictive formulation can be described as 
P P P

P C

P P P

P

-1 -2

i P i i i i

-

i

-1 -2

i P i i i i

-

( ) ( ) ( ) ( 1

                                      ( 1)

( ) ( ) ( ) ( 1

                                     

N N N

N N

C

N N N

N N

x k N k A x k A B u k B u k

A B u k N

y k N k CA x k CA B u k CB u k

CA

       

   

       



）

）

C

i C( 1)B u k N  

               (22) 

After integrating Lagurge functions, they can be modified as 
1

- -1 T

0

1
- -1 T

0

( ) ( ) ( ) ,     ( )

                  ( ) ( )

m
m m i

i i i i i

i

m
m m i

i

i

x k m k A x k A BL i y k m k

CA x k CA BL i













   

 




                     (23) 

where NP is the prediction horizon, NC is the control horizon, 
i i( )x k m k  and 

i i( )y k m k  are the 

predicted state variables and the predicted output at ki + m with given current plant information x(ki). 

Then a new expression of the cost function can be obtained 
T T2 ( )iJ x k                                                   (24) 

where T

L

1

( ( ) ( ) )
PN

m

m Q m R 


   , 
1

( ( ) )
PN

m

m

m QA


   , RL is a designed matrix, and 
1

1 T

0

( ) ( )
m

m i

i

m A BL i


 



  

with TQ C C . 

To find the minimum of Eq. (24) without constraints, 1  is assumed existent. Then the optimal 

solution of the parameter vector η can be obtained by letting the partial derivative of the cost function 

approach to zero.  

It is found that the condition number of the matrix   increases as the prediction horizon NP 

increases. For a microbial fuel cell system, we assume that a=0.5, N=8, RL =0.1I. Here I is an unit 

matrix. When NP is equal to 50, the condition number of the matrix   is 1.6748×10
7
. When NP 

increases to 100, the condition number increases to 2.4248×10
8
, and when NP is 200, the condition 

number increases to 4.5702×10
9
. A relative small prediction horizon couldn’t ensure the stability of the 

system. However, if the prediction horizon NP is oversize, a numerical conditioning problem may 
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occur, and this numerical problem becomes severe when the plant model itself is unstable or when the 

dimension of the matrix A is large.  

An exponentially weighted moving horizon window can convert the numerically ill-

conditioned matrix   into a numerically well-conditioned in the presence of a large prediction horizon 

and could deal with great changes of the plant which originally get serious problems.  

Define the sequence of exponentially weighted state variable and incremental control as 
P1 2 T

P
ˆ [ ( 1 ), ( 2 ), , ( ), ( )]

Nj

i i i i i i i iX x k k x k k x k j k x k N k                  (25) 

P0 1

P
ˆ [ ( ), ( 1), , ( ), ( )]

Nj T

i i i iU u k u k u k j u k N                            (26) 

When 1  , the weights decrease with the increase of sample j, thus the exponential weights 

de-emphasizes the state x(ki + j| ki) at the current time and less emphasis on those at future times. when 

1  , the situation just opposite, which de-emphasizes future times more than current time. As can be 

seen from Eq. (25) to Eq. (26), the key improvement is in that of the future states, and control variables 

are no longer have equal weights. 

By using these exponentially weighted variables, the exponentially weighted cost function is 

expressed in terms of the transformed variables. The result is summarized as 
P P

T T

1 0

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
N N

i i i i i L i

j j

J x k j k Qx k j k u k j R u k j
 

                           (27) 

where Q and RL are weight matrices, ˆ( )i ix k j k  and ˆ( )iu k j   are governed by the following 

difference equation:  

ˆ ˆ ˆ( 1 ) ( ) ( )i i i i i

A B
x k j k x k j k u k j

 
                                    (28) 

 

 

 

4. RESULTS AND DISCUSSION 

In order to verify the control effect of these designed controllers, simulation operations of the 

MFC system with these controllers are carried out. For the purpose of designing MPC controller, Least 

Square Technique is used to identify the state space model of the microbial fuel cell described in the 

Section 2, and the identification solutions of the coefficient matrices are 

   
T

d d d

0.9163 0.9972
,   0.4718 0.9163 ,   133.757 0

0.8366 0.0055
A B C

 
   

 
          (29) 

According to the principle of MPC, the parameter matrices corresponding to the basic 

increment-input-output model described in Eq. (16) can be derived as 

   
T

122.5615 133.3825 1

0.9163 0.9972 0 ,   3.1066 0.4718 0.91636 ,  = 1 0 0

0.8366 0.0055 0

A B C

 
 

  
  

 (30) 

Hessian matrix, which is a square matrix of second partial derivatives of a scalar-valued 

function, often used to reflect the health status of a system. A system will be unhealthier when the 

Hessian matrix’s determinant is larger. The Hessian matrix for the microbial fuel cell system in this 

paper is 
L+T R  . For the traditional model predictive control, when NP=20, NC=4, RL=0.8I, the 

condition number of the Hessian matrix is 608140; when NP=50, the condition number of the Hessian 

matrix is 2888600; and when NP=200, the condition number of the Hessian matrix is 14410000. It is 
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obvious that with the increase of the prediction horizon, the system performance getting worse and 

worse. 

After amending the control algorithms with exponential data weighting functions, it is found 

that when a=0.5, N=10, RL=0.1I,  =1.5, NP=50, the condition number of the Hessian matrix is 7550. 

When NP=100, the condition number of the Hessian matrix is 7660.3 and when NP=200, the condition 

number of the Hessian matrix is 7680.5. It is obvious that the system performance has been obtained a 

lot of improvement. 

For a microbial fuel cell system, acetate concentration and temperature have great impacts on 

the output voltage. So, the feed flow rate of the cathode chamber and the anode chamber were selected 

as control variables and the influent acetate concentration and temperature as the disturbances, 

respectively. Three control strategies, including traditional MPC with reduced horizon control, 

improved MPC with Laguerre functions and improved MPC with exponential data weighting, are 

designed and compared in this paper.  

When the plant is running under the traditional MPC, the predictive horizon is 20, the control 

horizon is 2, and the output weight is a unit matrix. When the plant is running under the MPC with 

laguerre functions substituting the control variables (LMPC) and under the exponentially weighted 

corrected MPC (EMPC), the two core factors are a is 0.3 and N is 4, the predictive horizon is 48, the 

weighting TQ C C , and RL=0.3I. What’s more,  is chosen as 1.5 in the MPC with exponentially 

weighted corrected control strategy. The sampling time of the three control strategies is 1s.  

The output curves between the uncontrolled nonlinear system and those under MPC controller 

are compared first. Here, the operation status with the feed of the cathode chamber as input is 

simulated. The output voltage of the MFC is set at 0.5V, Qc is selected as the control variable. Two 

kinds of disturbances are studied, one is that the concentrations of acetate CAC drops from 1.56molm
-3

 

to 1.2molm
-3 

at the time of 200h, and the other is that the temperature reduces from 313K to 303K at 

the point of 200h. The output voltage curves for the traditional MPC (TMPC) controller and the 

original uncontrolled system are compared in Fig.1. 
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(a) CAC disturbances                    (b) Temperature disturbances 

 

Figure 1. Output curves compared between uncontrolled and TMPC system 
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It can be seen from Fig. 1 that when there is no control action is applied, the MFC system needs 

a long time to get steady, and the output voltage has an obvious deviation from the setting value. 

However, when MPC is used to the system, the output voltage could follow the setting point in a short 

time, even though there exists a load disturbance.  

Simulation curves corresponding to temperature variation are shown in Fig. 2 to Fig. 4, the 

temperature drops from 313K to 303K at the time of 20h. The curves corresponding to acetate 

concentration changing are shown in Fig. 5 to Fig. 7, where CAC is reduced from 1.56molm
-3

 to 

1.2molm
-3

 at 20h. In these figures, ‘TMPC’ stands for the traditional MPC strategy, ‘LMPC’ stands for 

improved strategy with Laguerre functions and ‘EMPC’ stands for the improved strategy with 

exponential data weighting. 

Some phenomena can be observed from Fig. 2 to Fig. 7. Compared with general MPC, MPC 

with Laguerre functions make the MFC system present faster response and higher accuracy in stability. 

However, the overshoot and oscillation at perturbation point caused by MPC with Laguerre functions 

are more evident than that caused by general MPC.  
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Figure 2. Comparison curves between TMPC and LMPC (T disturbances) 
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Figure 3. Comparison curves between TMPC and EMPC (T disturbances) 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

746 

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

t/h

V
fc
/V

 

 

EMPC

LMPC

0 5 10 15 20 25 30 35 40
-0.1

-0.05

0

0.05

0.1

0.15

0.2

t/h

Q
c
/(

m
3
h

-1
)

 

 

EMPC

LMPC

 
 

Figure 4. Comparison curves between LMPC and EMPC (T disturbances) 
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Figure 5. Comparison between TMPC and LMPC (CAC disturbances) 

 

However, MPC with exponential data weighting can make the MFC system present faster 

response, smaller overshoot and higher steady-state accuracy than general MPC, and it also can give 

more control effect than MPC with Laguerre functions. 

By analysing of Fig.1 to Fig.7, we can also find some fact results. Both substrate concentration 

and environmental temperature are important factors that influence the operation performance of a 

microbial fuel cell. By real-time adjustment of the feed flow rate in cathode, the output voltage of the 

microbial fuel cell can be controlled at the given value even though it suffers from perturbations. 

Whether it is disturbance in substrate concentration or environmental temperature, the model 

predictive controller can resist the disturbance influence well. 

Compared with the references which come down to control of MFC [22, 23], this paper 

presents the only scheme concerned about the realization of constant voltage output of the microbial 

fuel cell. With comparison between the results obtained under the control scheme presents in this paper 

and the results shown in reference [16], it can be seen that the control scheme presented in this article 
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can resist the influence of disturbances on the output voltage of MFC effectively. Further, the control 

scheme offered by this article is based on the advanced control technology, which is almost cannot be 

seen in references published so far. It is an effective way to improve the performance of microbial fuel 

cells by means of advanced control technology. 
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Figure 6. Comparison curves between TMPC and EMPC (CAC as disturbances) 
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Figure 7. Comparison curves between LMPC and EMPC (CAC as disturbances) 

 

 

 

4. CONCLUSIONS 

Microbial fuel cells have complicated reaction mechanism, and they need good power control 

systems to keep them working in some required running states. By using right MPC controller, the 

microbial fuel cell can not only have fast response characteristic, but also have good steady-state 

behavior and strong robustness. The suitable model predictive control scheme can get satisfactory 

results in tracking a given voltage and make the microbial fuel cell output a required constant voltage. 
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