# Effect of $Cr^{3+}$ Substitutions on Conductivity of Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> (0.01 $\leq y \leq$ 0.03) Ceramic Electrolytes at High Temperature

S.B.R.S Adnan<sup>\*</sup> and N.S. Mohamed

Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia <sup>\*</sup>E-mail: <u>syed\_bahari@um.edu.my</u>

Received: 19 August 2014 / Accepted: 13 November 2014 / Published: 2 December 2015

The objective of the present study was to investigate the effect of  $Cr^{3+}$  substitutions on conductivity of  $Li_{4.08+y}Zn_{0.04}Cr_ySi_{0.96-y}O_4$  (0.01  $\leq y \leq 0.03$ ) prepared via sol gel method. X-ray diffraction was applied to investigate the crystalline phase, structure and unit cell parameters of those solid electrolytes. Complex impedance spectroscopy was carried out to study the Li<sup>+</sup> conductivity. The result showed that the  $Li_{4.08+y}Zn_{0.04}Cr_ySi_{0.96-y}O_4$  with y = 0.03 exhibited highest total conductivity of  $6.27 \times 10^{-5}$  S cm<sup>-1</sup> at 473 K and  $2.44 \times 10^{-3}$  S cm<sup>-1</sup> at 773K. The insertion of  $Cr^{3+}$  found to enhance conductivity as a result of increase in Li<sup>+</sup> ion concentration and mobility.

Keywords: Arrhenius, ceramic electrolytes, conductivity, LISICON

## **1. INTRODUCTION**

Lithium Orthosilicate,  $Li_4SiO_4$  is one of the LISICON group members which have attract research interest because of their easily synthesized, less expensive to produce, stable in air, low self discharge and no reaction with lithium metal [1]. The basic structure of  $Li_4SiO_4$  is monoclinic and composed of hexagonal close packed oxygen ion arrays which is iso-structural with  $\gamma$ -Li<sub>3</sub>PO<sub>4</sub>. The SiO<sub>4</sub> and LiO<sub>4</sub> tetrahedral share oxygen vertices to form a loose three-dimensional framework favourable for ion transport. The lithium ion diffusion is expected to occur through tetrahedral site and interstitial octahedral site pathway [2-3].

For the past 10 years, great efforts have been made for enhancing the Li<sup>+</sup> conductivity in Li<sub>4</sub>SiO<sub>4</sub> compound. Many attempts have been reported in the literature. Double partial substitutions using  $Cr^{3+}$  and  $Zr^{4+}$  with the formula of Li<sub>4-3x</sub> $Cr_xZr_ySi_{1-y}O_4$  with x = 0.02 and y = 0.06 has been reported by authors previously enhanced the conductivity of Li<sub>4</sub>SiO<sub>4</sub> compound by two orders of

magnitude [2]. Meanwhile, partials substitutions using different cations also have been reported can create extra lithium interstitial in the Li<sub>4</sub>SiO<sub>4</sub> structure such as in Li<sub>4+x</sub>T<sub>x</sub>Si<sub>1-x</sub>O<sub>4</sub> ( $T = B^{3+}$ , Al<sup>3+</sup>, Ga<sup>3+</sup>, Cr<sup>3+</sup>, Fe<sup>3+</sup>) system [4-7]. The extra lithium interstitial accommodated in the distorted tetrahedrally or octahedrally site leading to an increase of charge carrier concentration in the compound and also giving rise to conductivity. However, the partial substitution on the Si<sup>4+</sup> site in the Li<sub>4</sub>SiO<sub>4</sub> compound using Zn<sup>2+</sup> and Cr<sup>3+</sup> which forming compounds with the formula Li<sub>4+2x+y</sub>Zn<sub>x</sub>Cr<sub>y</sub>Si<sub>1-x-y</sub>O<sub>4</sub> has not been reported previously. Apart of the larger size than Si<sup>4+</sup>, which is expected to enlarge the migration channel of the structure, the inclusion of Zn<sup>2+</sup> and Cr<sup>3+</sup> in the Li<sub>4</sub>SiO<sub>4</sub> structure also introduces extra interstitial Li<sup>+</sup> ions. As such, in this study, Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> with y = 0.01, 0.02, 0.03, 0.04 were synthesized by sol gel method and characterized. The effect of double substitutions using Cr<sup>3+</sup> and Zn<sup>2+</sup> on the conductivity of Li<sub>4</sub>SiO<sub>4</sub> were investigated.

#### 2. EXPERIMENTAL PROCEDURE

#### 2.1 Synthesis of samples

For preparation of the sample, lithium acetate, zinc acetate and chromium(III) acetate and tetraethyl orthosilicate were used as the starting materials while citrate acid was used as the chelating agent. All the chemicals were first dissolved in distilled water with molar ratio of Li : Zn : Cr : Si fixed according to formula  $\text{Li}_{4+2x+y}\text{Zn}_x\text{Cr}_y\text{Si}_{1-x-y}\text{O}_4$  (x = 0.04, y = 0.01, 0.02, 0.03, 0.04). The variable of x was fixed to 0.04 due to the maximum value to obtain pure sample. Solution of citric acid was mixed together to the previously prepared solutions under magnetic stirring. The solutions were transferred into reflux systems and continuously stirred until homogeneous solutions were formed. Solution of tetraethyl orthosilicate was later added to these homogeneous solutions. After stirring for 12 hours, the solutions were taken out and then vaporized for about 2 hours under magnetic stirring at 75°C. The resulting sticky wet gels formed were dried in an oven at 150°C for 24 hours. The powders were sintered at temperature 800°C for 12 hours and later pressed using a Specac hydraulic pellet press to form pellets with diameter and thickness of 13 mm and 2.0 mm.

#### 2.2. Characterization techniques

XRD patterns of the powder samples were recorded using PANalytical-X'pert<sup>3</sup> X-ray Diffraction spectrometer. The samples were subjected to a beam of Cu-K<sub> $\alpha$ </sub> radiation of wavelength of 1.5406 Å. The patterns were recorded in 2 $\theta$  range between 10° to 70° at the rate of 0.016° in step width and analyzed using High score plus software. The conductivity of the samples were determined using Solatron 1260 impedance analyzer over a frequency range from 1 to 10<sup>6</sup> Hz. The samples were sandwiched between two stainless steel electrodes. Meanwhile, the AC conductivity has been calculated from dielectric data in accordance with the relation:

$$\sigma_{AC} = \omega \varepsilon_o \varepsilon^{T} \tan \delta \tag{1}$$

where  $\varepsilon_o$  is permittivity of the free space,  $\varepsilon_{n}$  is dielectric loss,  $\omega$  is  $2\pi d$  and  $tan \delta$  is the dielectric loss factor [8].

#### **3. RESULT AND DISCUSSION**

### 3.1 Phase analysis

Displayed in Fig. 1 are XRD patterns of  $\text{Li}_{4.08+y}\text{Zn}_{0.04}\text{Cr}_{y}\text{Si}_{0.96-y}\text{O}_{4}$  (y = 0.01, 0.02, 0.03, 0.04) sintered for 12 h at 800°C. The XRD patterns of all samples can be indexed to monoclinic structure in space group  $P2_{1/m}$  (with Ref. no : 98-002-5759). The Zn<sup>2+</sup> and Cr<sup>3+</sup> could only be substituted with the Si<sup>4+</sup> without the presence of impurities up to x = 0.04 and y = 0.03. This also suggests that the full substitution of Si<sup>4+</sup> by Zn<sup>2+</sup> and Cr<sup>3+</sup> occurred in the lattice structure of Li<sub>4</sub>SiO<sub>4</sub>. As such, further analyze was only done on the samples with  $0.01 \le y \le 0.03$ .



**Figure 1**. XRD patterns of  $Li_{4.08+\nu}Zn_{0.04}Cr_{\nu}Si_{0.96-\nu}O_4$  samples

Figure 2 shows all peaks at (100) plane which were contributed by the substitutions of  $Si^{4+}$  with  $Cr^{3+}$  and  $Zn^{2+}$  shift to lower diffraction angles compared to the unsubstituted  $Li_4SiO_4$  [9]. This suggests that there are more ions accommodated in the lattice structure. The substitutions of  $Si^{4+}$  by  $Cr^{3+}$  and  $Zn^{2+}$  cause distortion of the hcp sublattices generating tetrahedral packed array due to the difference in the ionic radius of  $Si^{4+}$  (0.41 Å) compare to  $Cr^{3+}(0.64$  Å) and  $Zn^{2+}$  (0.74 Å). The

mechanism allows additional cations to be accommodated in the tetrahedral sites. This is especially advantageous for lithium ions which owing to their small size can be readily accommodated in the distorted tetrahedrally and octahedrally co-ordinated [2].



Figure 2. XRD patterns of  $Li_{4.08+y}Zn_{0.04}Cr_ySi_{0.96-y}O_4$  samples in 2 $\Theta$  range from 16.20 to 17.00°



Figure 3. (i) Unit cell parameters and (ii) unit cell volume of Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> samples

Meanwhile, the partial substitution also cause an increase of unit cell parameters and unit cell volume (Figure 3) in the structure. This is supposed to facilitate  $Li^+$  mobility in the samples due to

enlarge of migration channel and lowers the energy barriers which able to increase the ion hoping between the grain boundaries.

## 3.2 Direct current conductivity

Typical complex impedance for  $Li_{4.08+y}Zn_{0.04}Cr_ySi_{0.96-y}O_4$  (0.01  $\leq y \leq 0.03$ ) compounds at 473 K are shown in Fig.4.







**Figure 4**. Typical complex impedance for  $\text{Li}_{4.08+y}\text{Zn}_{0.04}\text{Cr}_{y}\text{Si}_{0.96-y}\text{O}_{4}$  (0.01  $\leq y \leq 0.03$ ) compounds

The total conductivity,  $(\sigma_t)$  (bulk conductivity,  $\sigma_b$  + grain boundary conductivity,  $\sigma_{gb}$ ) which represent the direct current (d.c) conductivity in the ceramic sample can be calculated from equation [2]:

$$\frac{1}{\sigma_{t}} = \frac{1}{\sigma_{b}} + \frac{1}{\sigma_{gb}}$$
(2)  
where  $\sigma_{b} = \frac{d}{AR_{b}}$  and  $\sigma_{gb} = \frac{d}{AR_{gb}}$ . In these equation, *d* is sample thickness, *A* is cross-sectional

area of the sample,  $R_b$  is bulk resistance and  $R_{gb}$  is grain boundary resistance. As the substitution of y value (Cr<sup>3+</sup>) increase, the total resistance,  $R_t = (R_b + R_{gb})$  value shifts towards a lower value indicating increase in conductivity. The  $\sigma_b$ ,  $\sigma_{gb}$  and  $\sigma_t$  of Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> (0.01  $\leq y \leq$  0.03) compounds are listed in Table 1.

**Table 1**. The  $\sigma_b$ ,  $\sigma_{gb}$  and  $\sigma_t$  of Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> (0.01  $\leq y \leq 0.03$ ) compounds at 473 K

| Compounds       | $\sigma_{b}$             | $\sigma_{\mathrm{gb}}$   | $\sigma_t$               |
|-----------------|--------------------------|--------------------------|--------------------------|
|                 | $(\mathrm{S \ cm}^{-1})$ | $(\mathrm{S \ cm}^{-1})$ | $(\mathrm{S \ cm}^{-1})$ |
| <i>y</i> = 0.01 | $6.84 \times 10^{-5}$    | $2.51 \times 10^{-4}$    | $1.80 	imes 10^{-5}$     |
| y = 0.02        | $7.53 \times 10^{-5}$    | $3.76 \times 10^{-5}$    | $2.51 \times 10^{-5}$    |
| y = 0.03        | $1.88 \times 10^{-4}$    | $9.42 \times 10^{-5}$    | $6.27 \times 10^{-5}$    |

The arcs observed in the graphs can be represented by the equivalent circuit using combination of resistor,  $R_p$  and capacitor,  $C_p$  with constant phase element (CPE) behavior (Figure 5). The general expression of the CPE is [10];

$$Z = \frac{1}{C(j\omega)^n} \tag{3}$$

Here, *C* indicates ideal capacitance where n = 1,  $j = (-1)^{1/2}$  and  $\omega$  shows the angular frequency.

The equivalent circuit consists of a series of array of parallel RC elements attached with a series resistor,  $R_s$ . Series resistance corresponds to bulk resistance whereas grain boundary resistance is represented by a resistance which is attached in parallel to a capacitor.



Figure 5. Equivalent circuit of the samples on the basis of impedance analysis



Figure 6. Temperature dependence of total conductivity for Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> samples

Figure 6 presents the relationship between total conductivity of  $Li_{4.08+y}Zn_{0.04}Cr_ySi_{0.96-y}O_4$  (0.01  $\leq y \leq 0.03$ ) with temperature. The total conductivities fit the Arrhenius equation:

Int. J. Electrochem. Sci., Vol. 10, 2015

$$\sigma_t T = A(T) \exp\left(\frac{-E_\alpha}{kT}\right) \tag{4}$$

where A is the pre-exponential factor,  $E_{\alpha}$  is the activation energy for conduction and k is the Boltzman. The Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> with y = 0.03 shows the highest total conductivity of  $6.27 \times 10^{-5}$  S cm<sup>-1</sup> at 473 K and  $2.44 \times 10^{-3}$  S cm<sup>-1</sup> at 773K. This value is an order of magnitude higher compared to the parent compound reported earlier by the authors [9]. The linear relationships are observed for the whole testing temperature range suggesting that there are no structure and phase changes in the samples. The activation energy of the samples was extracted from the slope of the Arrhenius graph and also shown in Figure 6. The low activation energy indicate an easier movement of lithium ion from one site to another in the lattice structure which resulting high mobility of ions and conductivity as well.

#### 3.3 Alternating current conductivity

Fig. 7 depicts the frequency dependence conductivity spectra of  $\text{Li}_{4.08+y}\text{Zn}_{0.04}\text{Cr}_y\text{Si}_{0.96-y}\text{O}_4$  (0.01  $\leq y \leq 0.03$ ) at 773 K. The conductivity spectra behavior obeys the universal power law :  $\sigma_{Ac}(\omega) = \sigma(0) + A\omega^{\alpha}$  where  $\sigma(0)$  is the DC conductivity of the sample, A is a temperature dependent parameter and  $\alpha$  is the power law exponent.



**Figure 7.** Conductivity spectra of Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub> samples at 773 K

The ionic hopping,  $\omega_p$  can be directly obtained from conductivity spectra data since it corresponds to  $\sigma(\omega) = 2\sigma(0)$  [4,8,10-13]. Meanwhile the Li<sup>+</sup> concentration, *C* can be obtained using the equation [4,8,10-13]:

$$C = \frac{\sigma_t T}{\omega_p} = C = n e^2 a^2 \gamma k^{-1} \tag{5}$$

where *e* is the electron charge,  $\gamma$  is the correlation factor which is set equal to 1, *a* is the jump distance between two adjacent sites for the ions to hope which is assumed to be 3Å for all materials, *n* is the concentration of mobile ions which can be calculated using Eq.5 and *k* is the Boltzmann constant. The Li<sup>+</sup> mobility,  $\mu$  can be calculated using equation:  $\mu = \sigma_t / ne$ . The values of  $\sigma$ ,  $\omega_p$ , *C* and  $\mu$  for the studied samples are tabulated in Table 2. The table shows that Li<sup>+</sup> concentration and mobility in the samples increase with increase of Cr<sup>3+</sup>. This shows that inclusion of Cr<sup>3+</sup> not only facilitates mobility of Li<sup>+</sup> ions but also increases the number of ions that contribute to conductivity enhancement.

**Table 2**. Parameters of  $\sigma$ ,  $\omega_p$ , C and  $\mu$  for Li<sub>4.08+y</sub>Zn<sub>0.04</sub>Cr<sub>y</sub>Si<sub>0.96-y</sub>O<sub>4</sub> at 773 K

| Compounds       | σ                        | $\omega_p$ | K                                       | μ                                             |
|-----------------|--------------------------|------------|-----------------------------------------|-----------------------------------------------|
|                 | $(\mathrm{S \ cm}^{-1})$ | (kHz)      | $(S \text{ cm}^{-1} \text{ K Hz}^{-1})$ | $(\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1})$ |
| <i>y</i> = 0.01 | $3.16 \times 10^{-4}$    | 12.58      | $1.94 \times 10^{-8}$                   | $1.70 \times 10^{-11}$                        |
| <i>y</i> = 0.02 | $7.96 \times 10^{-4}$    | 19.95      | $3.08 \times 10^{-8}$                   | $2.70 	imes 10^{-11}$                         |
| <i>y</i> = 0.03 | $2.44 \times 10^{-3}$    | 79.43      | $3.37 \times 10^{-8}$                   | $1.07 \times 10^{-10}$                        |

## 4. CONCLUSIONS

The effect of extra interstitial ions due to  $Cr^{3+}$  substitutions on the  $Li_{4.08+y}Zn_{0.04}Cr_ySi_{0.96-y}O_4$ (0.01  $\leq y \leq 0.03$ ) compounds was investigated by X-ray diffraction and impedance spectroscopy. The XRD result indicated that  $Zn^{2+}$  and  $Cr^{3+}$  were successfully inserted into the  $Li_4SiO_4$  structure. The compound showed enhanced conductivity ( an order of magnitude higher than that of the parent compound) due to the presence of extra interstitial  $Li^+$  ions that contributed to conductivity and their enhanced mobility.

#### ACKNOWLEDGMENTS

Financial support from the University of Malaya (research grant BKP049-2014) is gratefully acknowledged.

#### References

- 1. T. Ying, Y. Danqin, L. Jie, Solid State Ionics, 179 (2008) 2396
- 2. S.B.R.S Adnan, N.S. Mohamed, Ceramics International, 40 (2014) 6373
- 3. D. Tranqui, R.D Shannon, H.Y Chen, Acta Cryst. B35 (1979) 2479
- 4. S.B.R.S Adnan, N.S. Mohamed, Int. J. Electrochem. Sci., 8 (2013) 6055

- 5. C. Masquelier, M. Tabuchi, T. Takeuchi, W. Soizumi, H. Kageyama, O. Nakamura, *Solid State Ionics*, 79 (1995) 98
- 6. Y. Saito, K. Ado, T. Asai, H. Kageyama, O. Nakamura, Solid State Ionics, 47 (1991) 149
- 7. Y. Saito, T. Asai, K. Ado, H. Kagayema, O. Nakamura, Solid State Ionics, 40/41 (1990) 34
- 8. S.B.R.S Adnan, N.S. Mohamed, Ceramics International, 40 Part B (2014) 11441
- 9. S.B.R.S Adnan, N.S. Mohamed, Ceramics International, 40, (2014) 5033
- 10. D.F. Zhou, Y.J. Xia, J.X. Zhu, J. Meng, Solid State Sciences, 11 (2009) 1587
- 11. S.B.R.S Adnan, N.S. Mohamed, Int. J. Electrochem. Sci., 7 (2012) 9844
- 12. D.P. Almond, A.R West, Solid State Ionics, 9&10 (1983) 277
- 13. T. Savitha a, S. Selvasekarapandian, C.S. Ramya, M.S. Bhuvaneswari ,G. Hirankumar, R. Baskaran, P.C. Angelo, *Journal of Power Sources* 157 (2006) 533
- 14. S.B.R.S Adnan, N.S. Mohamed, Solid State Ionics, 262 (2014) 559

© 2015 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).