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This work investigates the effect of CeO2 and ZrO2 nanoparticles on the corrosion protection 

performance of non-inhibited and cerium inhibited silane coatings in 3.5% and 5% NaCl solutions on 

electro-galvanized steel substrates. Atomic force microscopy (AFM) results show relatively uniform 

coating thickness and varying nanoparticle distribution depending on coating composition. The 

corrosion behaviour of the sol–gel coatings revealed that CeO2-ZrO2 nanoparticles reinforce the barrier 

properties of the silane films and seem to act as nano-reservoirs providing a prolonged release of 

cerium ions. This prolonged release of inhibitor from oxide nanoreservoirs confers longer protection to 

the metallic substrate.  

 

 

Keywords: CeO2 nanoparticles; ZrO2 nanoparticles; Cerium nitrate; Electro-galvanized steel; 

Corrosion protection; EIS spectroscopy; salt-spray test.  

 

 

1. INTRODUCTION 

Zinc is widely used as a protective coating to prevent corrosion of steel. Zinc is more 

electronegative than iron, and therefore offers anodic sacrifice protection to steel in corrosive media. 

For industrial zinc-coated substrates, it is important to delay or avoid “white rust” formation in humid 

environments, and consequently it is necessary to search for alternative methods for corrosion 

protection of galvanized steel [1-3]. Recently, hybrid silica-based sol-gel coatings attracted 

considerable interest, as they provide the formation of a thin organic coating that confers surface 

functionalization [4-6]. These coatings combine flexibility and good compatibility with paintings due 

to the organic component, and good mechanical properties and adhesion to the metallic substrate 
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conferred by the inorganic compound [7]. Silanes create a dense, oxygen-rich coating that generates a 

protective physical barrier [8]. However, these coatings are inert, and do not provide any active 

protection if aggressive species reach the metallic surface and initiate corrosion [6, 9]. Indeed, silane 

coatings present small pores, pinholes or micro cracks that facilitate electrolyte diffusion and the 

accumulation of aggressive species at the coating/substrate interface [10]. Therefore, the challenge is 

to modify the bulk properties of silane coatings by adding “active” protective species that further 

improve the corrosion resistance of the layer, or introduce self-healing capabilities [11].  

A successful approach to improve the corrosion protection of silane coatings is based on the 

addition of oxide nanoparticles. These provide improved oxidation, corrosion, erosion and wear 

resistance. Extensive research has been carried out to enhance the corrosion resistance of metallic 

substrates by using ZrO2 [6, 7, 12, 13], CeO2 [14-17], SiO2 [11, 14, 18-21], Al2O3 [22], TiO2 [23, 24], 

and other mixed oxides. The amount of cracks and pores in sol-gel films can be decreased by 

incorporation of oxide nanoparticles into the hybrid matrix [12]. CeO2 and ZrO2, are particularly 

interesting due to their high corrosion, mechanical abrasion and wear resistance [6]. Montemor et al. 

[11] and Zheludkevich et al. [12] reported the modification of silane-based hybrid films with CeO2, 

ZrO2 or CeO2-ZrO2 nanoparticles. Results demonstrated that CeO2 nanoparticles are very effective 

fillers, leading to both improved barrier and corrosion protection properties of the silane coatings. ZrO2 

nanoparticles produce an important enhancement of the barrier properties, and could act as a reservoir 

for corrosion inhibitors, but are otherwise inert [6]. Unfortunately, these films can no longer offer 

adequate protection if the coating is damaged due to the lack of self-healing capabilities.  

Conversely, incorporation of corrosion inhibitors into sol-gel films can enhance the protective 

ability of the coatings, suppressing the corrosion process in the defects or where the coating has been 

damaged [12]. Among the most effective protective species, rare-earth salts offer good corrosion 

inhibition properties in addition to environmental friendliness [25]. Cerium nitrate has been 

successfully tested for corrosion protection of galvanized steel substrates, either as a conversion film 

[26-28] or as a corrosion inhibitor through addition to the silane formulation [25, 29-31]. However, 

corrosion inhibitors that are directly introduced into the silane formulation have difficulties to provide 

long-term protection of metals. In order to heal corrosion spots, a slow release of inhibitor would be 

desirable [32, 33]. This shortcoming calls for the development of nano-reservoirs to isolate inhibitors 

and prevent its direct interaction with the sol-gel matrix. Moreover, nanoparticle activation with 

cerium ions could reduce nanoparticle agglomeration due to stabilization of the surface charge [11]. In 

this way, the nanoparticles fix the cerium ions on their surface, distributing the inhibitor molecules 

homogenously in the bulk of the film and producing a slow release when required [7, 12].  

Despite extensive work on the study of the unique properties of either CeO2 or ZrO2 

nanoparticles, very little has been reported using a combination of both in the field of protective pre-

treatments. Montemor et al. [6] investigated the electrochemical behaviour of modified silane-based 

hybrid films with CeO2-ZrO2 nanoparticles on galvanized steel substrate in diluted NaCl solution 

(0.005 M). Results demonstrated that CeO2-ZrO2 nanoparticles play an active role in the corrosion 

protection performance when they are added as fillers to hybrid silane coatings. The work did not 

study the possibility of adding an active corrosion inhibitor such as cerium ions to enhance even 

further the anti-corrosion protection. Additionally, a long term evaluation of corrosion inhibition of 
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silane films modified with rare earth salts-oxide nanoparticles in aggressive media, including 

mechanisms to stress the coating or artificial damage to evaluate the self-healing properties, would fill 

an important gap in the field. 

The objective of this work was to investigate the effect of ceria and zirconia nanoparticles on 

protective behaviour of uninhibited and cerium inhibited silane hybrid coatings in aggressive media 

(3.5% and 5% NaCl, as opposed to 0.005M NaCl for the uninhibited CeO2-ZrO2 coatings mentioned 

above [6]). The hybrid silane film was prepared by the controllable hydrolysis of 3- 

glycidoxypropyltrimethoxysilane (GPTMS). The cerium salt activated nanoparticles were added after 

the hydrolysis step. The morphological features of the coated substrates were evaluated using atomic 

force microscopy (AFM). The corrosion behaviour of the sol–gel coatings was investigated using 

neutral salt spray tests, potentiodynamic polarization tests, and electrochemical impedance 

spectroscopy (EIS). Results show that the activation of CeO2-ZrO2 nanoparticles with cerium nitrate 

strongly improve the barrier properties of the silane films in concentrated NaCl and present better 

protective performance when compared with non-activated CeO2-ZrO2 filled system or systems filled 

with activated CeO2 or ZrO2 nanoparticles.  

 

 

 

2. EXPERIMENTAL 

2.1. Sample preparation 

Ceria and zirconia nanoparticles (10 wt % in water, particle size < 25 nm and < 100 nm 

respectively, Sigma Aldrich) were activated by ultrasonic dispersion in an aqueous solution of 

Ce(NO3)3 (Fluka). Four sets of aqueous solutions were prepared. Set D contained CeO2 and ZrO2 

nanoparticles, and Ce(NO3)3, while sets A, B and C where prepared with only two of the components 

(see Table 1).  

 

Table 1. Composition and thickness of the coatings 

 

Coating thickness (µm) Mole ratio (mol %) Set 

 CeO2 /Si ZrO2 /Si Ce (NO3)3 /Si 

61 + 10 - 0.0125 0.0375 A (SHC- ZrO2 + Ce(NO3)3 ) 

62 + 12 0.0125 - 0.0375 B (SHC- CeO2 + Ce(NO3)3 ) 

67 + 15 0.0250 0.0250 - C (SHC- ZrO2 - CeO2) 

75 + 13 0.0125 0.0125 0.0250 D (SHC- ZrO2- CeO2+ Ce(NO3)3 ) 

 

The silane solution was prepared by adding 4.084 mL of 3–glycidoxypropyl-trimethoxy silane 

(GPTMS, Merck) to 0.5 mL aqueous HCl (pH = 2), and stirred in a sealed beaker at room temperature 

for 20 min at 240 RPM to hydrolyse and condense the silane precursors. Next, the aqueous dispersion 

of nanoparticles was added and stirred for 10 min. For all samples the total Ce+Zr/Si mole ratio was 

0.05. In the next step, 2.111 g of bisphenol A (BPA, Merck) was added to the solution as a cross-
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linking agent. The BPA was dissolved by mixing the solution for 80 min. To accelerate the 

condensation reaction, 0.0152 mL of 1–methylimidazol (MI, Merck) was added to the solution and 

stirred for 5 min. A clear, colourless, homogenous solution resulted [34, 35].  

Electro-galvanized steel samples (Arcelor Mittal, Gent, Belgium) consisted of coupons (1.13 

cm
2
 area and 0.1 cm thickness, for the AFM and electrochemical tests), and plates (7 × 15 × 0.1 cm, 

and, for the salt spray tests). The zinc coating had a weight of 112 g/m
2
, and a thickness of 8 µm. The 

galvanized steel specimens were degreased using an alkaline cleaner, washed with distilled water, 

dried in air, and immersed in the silane solution for 60 s. The coated specimens were dried at room 

temperature for 24 h, and subsequently submitted to a 25–130 °C curing process with a heating rate of 

7.5 °C/min for 90 minutes, to initiate extensive cross-linking in the hybrid films [35].  

 

2.2. Analytical methods 

The coating thickness was measured by profilometry (Check line 3000 pro, Germany).  

Atomic force microscopy images were obtained under ambient conditions using a multimode 

scanning probe microscope (Digital Instruments, USA) equipped with a Nanoscope IIIa controller. 5 

and 1 µm scans were recorded in tapping mode, using a silicon cantilever (OTESPA, Veeco). 

Nanoscope software version 4.43r8 was used to analyse the surface roughness, after the recorded 

images were modified using an automated X–Y-plane fit. The root mean square (RMS) surface 

roughness of the topographic images was calculated from the whole 5 × 5 µm images. 

The protective performance of the coated substrates was evaluated in a neutral salt spray test 

that followed the ASTM B117 [36] procedure, using a 5 % NaCl solution. Prior to exposure, the back 

and the edges of the plates were covered with adhesive tape. An artificial scratch that reached the 

substrate was made in the coating to examine possible delamination. Visual assessment of the 

macroscopic surfaces was carried out at various time intervals throughout the total exposure time (264 

h). 

Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) 

measurements were carried out to monitor the protective performance of the silane-treated galvanized 

steel substrates in a 3.5% NaCl solution (0.60 M), using an Autolab PG-STAT20 potentiostat equipped 

with a frequency response analyser (FRA) module. A three-electrode configuration cell was used with 

a Ag/AgCl KClsat electrode as reference (all potentials quoted in this manuscript are referred to this 

electrode), and a platinum mesh as counter electrode. All electrochemical measurements were carried 

out at room temperature. 

Potentiodynamic measurements were performed within the range of –1500 to 0 mV, at a scan 

rate of 1 mV s
-1

. These experiments were replicated three times.  

The corrosion resistance of the coatings was analysed using EIS measurements performed at 

the open circuit potential (OCP), which was measured during 120 min. Data were collected over a 

distributed frequency range of 10
5
 - 10

–2
 Hz with a sinusoidal AC perturbation signal with a peak-to-

peak amplitude of 10 mV. Impedance fitting was performed using the Z-view software (Scribner 
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Associates Inc.). For each coating type, triplicate electrodes were prepared and each coupon was 

measured three times. 

 

 

 

3. RESULTS 

3.1. Surface morphology 

  

  
 

Figure 1. AFM top-view images of hybrid silane films modified with CeO2 and ZrO2 nanoparticles: 

(A) Ce(NO3)3 + ZrO2; (B) Ce(NO3)3 + CeO2; (C) CeO2-ZrO2; (D) Ce(NO3)3 + CeO2-ZrO2. Pin 

holes in coatings A and C marked by white circles. Inset is a zoom image over the same scan 

area. 
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The coating thickness values are shown in Table 1. All films showed similar thickness values. 

The mean thickness values show a slight increase in going from coating A to D. However, the error in 

thickness measurements is in the same order as the thickness variation between different films (15-

22%). Therefore, it is dubious to ascribe differences in protective behaviour to this variable. 

The general surface morphology and the nanoparticle distribution in the different modified 

silane films can be observed in Figure 1. For coatings B and D, the surface morphology was very 

uniform with absence of defects or cracks. In coating D, the nanoparticles are about 20 – 50 nm in 

diameter and uniformly distributed in the matrix when compared with the other samples (A, B, and C). 

Very few brighter spots (100-200 nm in diameter) are visible, which could either be ZrO2 

nanoparticles in the upper size limit (the manufacturer only informs the upper size limit, but no size 

distribution); or agglomerates of smaller nanoparticles on the surface [19, 30]. The size difference 

between the known dimensions of the added nanoparticles and the values measured by AFM can be 

explained by the presence of a silane layer on top of the nanoparticles. Thus, AFM measures the 

convexity of the surface caused by the underlying nanoparticles [6, 19] 

For coating B, the AFM images show the presence of both agglomerates and small 

nanoparticles. The individual nanoparticles also appear to be 20 - 50 nm in diameter. In this case, the 

larger spots (100-300 nm) are readily classified as agglomerates, since this sample does not contain the 

larger ZrO2 nanoparticles.  

Coatings A and C show numerous nanoparticles aggregates. Moreover, these images reveal the 

presence of some nano-sized holes in the coatings, particularly for coating C. Two examples of these 

holes are highlighted in Figure 1C. The occurrence of coating defects is undesirable, since they may 

serve as initiators for pit corrosion through reduced coating thickness and/or as the initiation sites of 

fatigue cracks [37]. 

RMS surface roughness values of 0.722 nm, 0.955 nm, 0.855 nm, and 0.485 nm were measured 

for coatings A, B, C and D respectively. Differences in surface roughness arise from the presence of 

nanoparticles aggregates. Coating D distinctly shows the lowest surface roughness. Thus, AFM surface 

morphology demonstrates that the silane formulation D is the best for providing uniform morphology 

with low roughness, monodispersed nanoparticles, and absence of coating defects. 

 

3.2. Salt spray tests 

Salt spray tests were performed to qualitatively analyse the coating efficiency. Figure 2a and b 

present results of the exposure tests after 168 h and 264 h. An uncoated substrate, was tested as 

control. An artificial scratch was made to all coated samples to evaluate the protective efficiency of 

both the intact and damaged coatings. 

After 168 h of exposure (Figure 2a) the uncoated substrate (Figure 2a,E) is heavily corroded 

with discoloration and pit formation. Samples A and C showed few spots of limited localized corrosion 

in the intact (non-damaged) coating, marked with black arrows in the images, which could be due to 

the presence of some pinholes in the coating layers as shown in AFM images (Figure 1A and C). In 

contrast, for coatings B and D no sign of corrosion was detected in the intact coating after 168 h.  
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The protective performance around the artificial scratch reveals the capacity of the coating to 

overcome coating damage. Sample (C) is heavily corroded in and around the edges of the scribe area 

(and particularly in the cross point), and shows a number of blisters together with white rust due to 

zinc coating degradation and formation of corrosion products such as zinc oxide and zinc hydroxide. 

The samples containing cerium nitrate (A, B and D) show lower delamination and corrosion products 

along the scribe area, as compared with sample C. The limited delamination in the presence of cerium 

nitrate suggests the availability of a corrosion inhibiting species.  

 

168 h (7 days) 

     

A 

264 h (11 days) 

    

B 

 

Figure 2. Photographs of uncoated and coated electro-galvanized steel samples with silane coatings A, 

B, C and D after 168 h (a) and 264 h (b) of salt spray exposure. 

 

After 264 h of exposure (Figure 2b), no considerable changes were detected in the intact area in 

none of the coated samples, pointing towards the good barrier properties of the intact coatings. The 

few spots observed in samples A and C at 168h, remained the same size and aspect, suggesting self-

healing capabilities to some extent for these coatings in the case of minor coating damage. In contrast, 
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around the scribe area, the breakdown of the coating layers in samples B and C progressed and this 

was followed by formation of red rust around the blisters, suggesting the presence of iron oxides, i.e. 

the bulk steel has already been corroded. The best performance was observed for samples A and D, i.e. 

the samples containing activated ZrO2. A few blisters are observed, but blister growth rate seems to be 

considerably lower when compared with samples B and C. Samples A and D do not show formation of 

red rust in and around the scribed area. These coatings seem to be the most capable of overcoming the 

effects of coating damage. 

 

3.3. Potentiodynamic polarization 
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Figure 3. Potentiodynamic polarization curves for the uncoated and coated electro-galvanized steel 

samples with silane coatings A, B, C and D, obtained after 1 h of immersion in a 3.5 % NaCl 

solution. The inset shows a zoom around the corrosion potential of the coated samples. 

 

Potentiodynamic polarization scans of coated and uncoated samples recorded after 1 h of 

immersion in 3.5% NaCl are presented in Figure 3. Both cathodic and anodic polarization curves were 

significantly shifted to lower current densities for all coated samples as compared to the uncoated 

sample. Moreover, the corrosion potentials of the coated samples showed a considerable shift in the 

noble direction. Because linearity is not achieved for a sufficiently large voltage interval, a quantitative 

Tafel analysis was not possible for any of the coated samples. The polarization curves still show 
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qualitatively the good barrier properties of all four coatings, with anodic currents at least one order of 

magnitude lower than the blank. All four coatings considerable decrease the available surface area for 

the corrosion reactions (oxygen reduction and metal dissolution), slowing down the corrosion activity, 

and hence the corrosion current density. These effects were more pronounced for coating D. 

Surprisingly, the initial slopes for the anodic branches of the coated samples are quite sharp, followed 

by a complete flattening of the current. This behaviour suggests that although the coatings are acting as 

a good barrier protecting most of the galvanized steel surface, the corrosion process is indeed very 

active in the few spots available for corrosion. 

These results suggest that the enhanced corrosion protection of coating D is due to controllable 

release of cerium nitrate by nanoparticles (as reservoirs) in corroded spots, forming complexes with 

zinc charged species and reinforcing their protective role. These more stable corrosion products 

decrease even more the active area available for corrosion reactions. 

 

3.4. Electrochemical impedance spectroscopy 

The Bode plots obtained for the substrates pre-treated with different modified silane films 

during 244 h immersion in 3.5% NaCl solution are depicted in Figure 4. The Bode plots show that the 

impedance spectra are dependent on the nature of the dopant. 
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Figure 4. EIS Bode modulus (a, c, e, g) and phase angle (b, d, f, h) plots obtained for electro-

galvanized steel samples pre-treated with silane coatings A (a, b), B (c, d), C (e, f), and D (g, h) 

during immersion in a 3.5 % NaCl solution. Solid lines show the fitted results to the equivalent 

circuits in Figure 5. 

 

Sample D showed impedance magnitude values, that are almost 3 times higher than for the 

other samples at the initial stage of immersion (Figure 4g). After 48 h of immersion, the impedance of 

this sample decreases, which is most probably associated with water uptake. Water uptake could occur 

either around the few nanoparticle agglomerations, through nanopores of sizes below AFM resolution, 

or through pores formed at a later stage because of electrolyte exposure [38]. With further increase of 

immersion time, the impedance magnitude of sample D shows a considerable recovery, the EIS 

spectrum after 96 h shows very similar values to the original spectrum at the beginning of the 

immersion experiment. This recovery is attributed to the self-healing effect of cerium ions around the 

corrosion spots [10]. A new drop in impedance magnitude at 168 h is again followed by mild recovery 

at 244 h. Most important, after 244 h immersion, sample D still shows the highest impedance 

magnitude values at low frequencies of all four coatings. Such high impedance magnitude values 

confer higher corrosion protection of the silane films doped with Ce(NO3)3 and CeO2-ZrO2 

nanoparticles.  

Conversely, the impedance magnitude values for the other coatings (A, B and C) continuously 

decreased with time, except a small recovery for sample B after 168 h immersion (Figures 4 a, c and 

e). Sample C shows the lowest impedance magnitude values. 
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The shape of the phase angle plots, at the beginning of the immersion (0 h), indicated the 

presence of three time constants for coatings A, B and C (Figure 4b, d, f), consisting of a large 

capacitive loop at high frequencies which can be attributed to the capacitive behaviour of the silane 

film [39, 40]; an pseudo-inductive loop at medium frequencies, which may be related to the breakdown 

of the former protective surface film and corrosion activity due to adsorption of ions from the 

electrolyte solution (Cl
-
 and Na

+
) through the pores of the coating [41-46]; and followed by the second 

capacitive loop at low frequencies, which reveals corrosion activity and build-up of corrosion products 

[39, 40]. After a few hours of immersion, the EIS response starts to change and the phase angle plots 

evolved to two time constants consisting of two large capacitive loops at high and low frequencies. 

This change suggests that the coatings developed electrolyte conductive pathways through the pinholes 

and around the agglomerations (as shown in AFM images (Figure 1 A-C)), whereby the electrolyte 

could reach the substrate. The inductive loop has disappeared  once the substrate has been fully 

adsorbed with ions. These ions will then start the corrosion process. For sample D, during  immersion, 

the shape of the phase angle plots also indicated two capacitive loops at high and low frequencies. 

Interestingly, we do not observe the inductive loop here. This is probably too small because the 

pinholes are much smaller and there are almost no nanoparticles aggregates, which means less 

electrolyte penetrates, and the absorption of ions is much slower and hence not apparent in the phase 

plot. 

 
Figure 5. Equivalent circuits used for the numerical fitting of the EIS data during immersion in a 3.5 

% NaCl solution. 

 

A more detailed interpretation of the EIS results can be made by numerical fitting of the 

experimental data to the equivalent circuits depicted in Figure 5. Because the phase angle plots 

revealed two or three time constants at different immersion times, two different equivalent circuits 

were used to fit the data. The equivalent circuit shown in Figure 5a was used to model the EIS results 

of samples A, B and C at the beginning of immersion (0h). The equivalent circuit shown in Figure 5b 
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was used to model the EIS results of sample D during 244 h immersion, as well as samples A, B and C 

during 48 h to 244 h of immersion. The numerical simulations are plotted as full lines in Figure 4 a to 

h. These fittings are in very good agreement with the experimental data for all the samples. 

Thus, for the equivalent circuits shown in Figure 5, Rs is interpreted as the resistance of the 

electrolyte; CPECoat and RCoat represent the capacitance and resistance of the hybrid coatings, 

respectively; L and RL represent the inductance and inductance resistance due to the adsorption 

reaction, respectively; CPEdl is the capacitance of the electrochemical double layer at the metal/coating 

interface; and Rct is the charge transfer resistance of the metal. In these equivalent circuits, constant 

phase elements (CPE) were used instead of pure capacitors, because of the non-ideal character of the 

corresponding response. This is due to presence of nanoparticles which give rise to a certain surface 

roughness and inhomogeneities. The true capacitances can be calculated from the respective CPE 

parameters, as described elsewhere [34]. The inductor which arises from adsorption effects could be 

defined as L=RL, where  is the relaxation time for adsorption on the electrode surface 
44

. The 

variation of the fitted parameters (resistances and capacitances) with immersion time using the 

equivalent circuits of Figure 5 are shown in Figure 6. Values are shown with the errors from the 

numerical fitting. 
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Figure 6. Evolution of the coating capacitance (a); coating resistance (b); charge transfer resistance 

(c); and double layer capacitance (d) during immersion in a 3.5 % NaCl solution.  
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The change of the silane hybrid film’s capacitance (CPEcoat) during immersion is presented in 

Figure 6a. Generally the capacitance of dielectric films depends on the amount of absorbed water [12], 

thus increases in capacitance values are associated to water uptake [11]. Sample D has the lowest 

coating capacitance of the four systems examined over the whole immersion time. In addition, during 

immersion, the capacitance yields relatively constant values, with only a small increase after 168 h of 

immersion. This suggests a lesser amount of water uptake, because of the smaller nanopores (below 

AFM resolution), or nanopores only formed later, or the almost absence of nanoparticle 

agglomerations (as mentioned above). Sample B is also relatively stable; showing a small capacitance 

increase after around 96 h. The capacitance of samples A and C exhibit significantly faster growth 

during 168 h of immersion, as a result of more water uptake through the pores/defects present in the 

films [15]. The access of aggressive species induces localised corrosion activity. This is followed by 

precipitation of either insoluble corrosion products or the inhibition activity of the film, which block 

the pores/defects at the coating/substrate interface leading to a partial recovery of the coating barrier 

properties. This precipitation is translated in a decrease in coating capacitance after the increase due to 

water uptake. Decreasing coating capacitance is more pronounced for samples A and B, in comparison 

to sample C, probably because of the presence of cerium nitrate. These results suggest that the 

activation of nanoparticles with cerium ions had a beneficial impact on the coating capacitance and 

thus the protective behaviour. 

The evolution of the coating resistance (Rcoat) of the sol–gel layers, is shown in Figure 6b. 

Sample D has the highest coating resistance during the 244 h immersion period; however the resistance 

decreases both at 48 h and 168 h suggesting the formation of some pores or the enlargement of smaller 

pores in the sol–gel layer [38]. In both cases, the coating resistance recovers, which is attributed to the 

self-healing properties of this coating. The coating resistance of samples A, B and C is lower in 

comparison to coating D, particularly in the case of the coating C. The coating resistance values of 

these films show a gradual decrease during immersion because of their porous structures. Because 

these pores are larger than in the case of coating D, the self-healing capabilities are not enough and 

cannot compensate the damage. The coating resistance of sample D was always, even after 244 h 

exposure, at least twice as high as the other samples.  

Figure 6c and d show the evolution of the charge transfer resistance (Rct) and double layer 

capacitance (CPEdl) values during immersion that are associated with the development of a time 

constant in the low-frequency range of the EIS spectra. For samples A, B and C, the low frequency 

resistance (Rct) reveals lower values than for coating D and a small decrease during immersion (Figure 

6c). In contrast, sample D shows some fluctuations, with a rapid drop and later recovery attributed to 

the self-healing properties. After 244 h of immersion, this coating shows a charge-transfer resistance, 

which is about 3 times higher than the other sol-gel films. 

The CPE associated with the corrosion process (CPEdl), remains almost constant for samples A 

and B over immersion for 244 h, reflecting the stability and the good barrier properties of the coating. 

In contrast, the CPEdl values for sample C are higher and showed a pronounced increase because of the 

enlargement of the pores, appearance of cracks or even peeling of the coating. Indeed some coating 

peeling was evident to the naked eye for coating C at the end of the immersion period. For sample D, 

the low-frequency capacitance passes through small maxima after 48h and 168 h immersion, and then 
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starts to decrease. These values agree with the evolution of the low-frequency resistance of the film. 

The evolution of the low-frequency resistance shows an increase after 96 h immersion, accompanied 

by a decrease in the CPE, i.e. as expected, the CPEdl changes in the opposite direction as Rct. Since the 

corrosion activity occurred in localised areas because of water uptake, it is likely that the precipitation 

of the insoluble and passive self-healing products occurred at these locations, thereby decreasing the 

corrosion activity at the interface [15].  

 

 

 

4. DISCUSSION 

The electrochemical results are in good agreement with the AFM images and the salt-spray 

tests. There is a clear correlation between protective performance and surface morphology. Sample C, 

containing non-activated CeO2-ZrO2 nanoparticles, shows both a large number of nanoparticles 

aggregates as well as several cracks or pores. This sample was the least performing in all corrosion 

tests: faster corrosion, red rust formation and even some localised corrosion in the undamaged coating 

in the salt spray test, the lowest Ecorr, and the impedance fitting parameters that showed the highest 

permeability to water, and hence aggressive species. Montemor et al. analysed this specific coating 

(CeO2-ZrO2 nanoparticles without cerium inhibitor) and found it was efficient and stable when 

exposed to diluted NaCl concentrations (0.005M) [6]. However, our results show that under more 

aggressive conditions, the nanoparticle reinforcing capabilities on the silane coating are not sufficient 

to protect the substrate. 

While none of the analysed coatings remained unchanged under the extreme aggressive 

conditions applied, all experimental evidence shows that the combination of CeO2 and ZrO2 

nanoparticles and cerium ions (coating D) outperforms the other coatings. The better performance in 

the corrosion tests strongly suggests that the addition of cerium ions to the CeO2-ZrO2 nanoparticles 

dispersion creates an important synergy, reinforcing the protection of the silane films [11]. The 

combination of two types of nanoparticles and the cerium ions doping produces the more 

homogeneous coating. The almost absence of nanoparticle aggregates could be due to less attraction 

between different nanoparticles (ZrO2 and CeO2), the repulsive effects of charged particles (in the 

presence of Ce(NO3)3), and the stabilization of the surface charge, as previously reported [12]. These 

effects are also present in coatings A and B, but not C. Indeed, a plausible explanation for the higher 

degree of nanoparticle aggregation and probably related extended nanoporosity of coating C could be 

the non-activation of the nanoparticles. Thus, besides the already reported corrosion inhibition and 

healing capabilities of Ce(NO3)3 [7, 12, 25-28, 31], our experimental evidence suggests that in 

combination with ZrO2 and/or CeO2 nanoparticles, it contributes to the reinforcement of the coating, 

by diminishing its porosity. 

EIS responses indicate changes in the coating long time before any visible damage occurs (as 

observed for example by salt spray test). Thus, while the salt spray is an excellent indicator of healing 

capabilities around coating damaged areas, EIS evaluates apparent intact coatings. Even though no 

pores or cracks were observed for coatings B and D by AFM, EIS showed that when subject to 

stressing conditions, water uptake does occur, and hence some corrosion activity starts to develop 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

1011 

(though invisible to the naked eye at this point). The reported self-healing properties of cerium ions are 

most evident in the rather sharp changes in both coating and charge transfer resistance values for 

coating D. These changes are associated with recovery after an initial aggression.  

Finally, performances shown by coatings A and B are quite similar. Coating A showed one spot 

of localised corrosion in an undamaged area and coating B did not. On the other hand, coating B 

showed some red rust around the damaged area after 264 h in salt spray, whereas coating A did not. 

Most probably the small spot of localised corrosion in A is associated with the small pores observed by 

AFM (not observed for B). Conversely, the absence of red rust for this same coating, suggests that the 

ZrO2 nanoparticles are more effective as nano-structured Ce-ion reservoirs and can provide longer 

release of the inhibitor ions [15], than the CeO2 nanoparticles. 

Previous work has outlined possible mechanisms to explain the corrosion inhibition effects of 

silane films, rare earth salts and oxide nanoparticles. Water uptake through the pre-existent pinholes in 

the coating causes development of anodic and cathodic activity. Under the conditions tested in the 

present work, the main cathodic reaction is oxygen reduction with production of hydroxyl ions. The 

Zn
2+

 ions produced at the anodic areas migrate to the cathodic spots where they combine with OH
−
 to 

form zinc corrosion products, which in the presence of chloride ions also lead to the formation of 

simonkolleite and/or other zinc chloride charged ions as reported in the literature [6, 11]. 

Simultaneously to these processes, and under an increased pH, the Si-O-Si network starts to 

decompose into a hydrated and expanded gel [11, 15, 20]. In a first step there is formation of silicates, 

which may provide some protection in small defects or pores. It has been reported that a passive film 

composed of Zn(OH)2 and ZnSi2O5 may form on the active areas and that preferential precipitation of 

zinc silicate occurred on the defects of the passive film, delaying the corrosion activity [15].  

As the pH becomes more alkaline, the deterioration of the silica network starts to release the 

CeO2 and/or ZrO2 nanoparticles, which are, in contrast, very stable under alkaline pH [11, 15]. The 

CeO2 nanoparticles have a very high affinity for oxygen and for charged ions, like Zn
2+

, compensating 

defects in the oxygen sub–lattice. CeO2 can co-precipitate together with the zinc corrosion products, 

leading to a more stable and protective surface layer, which polarizes the anodic reactions and inhibits 

the corrosion activity [11, 15, 20].  

Additionally, cerium ions released from the nanoparticles may form highly insoluble Ce(OH)3 

which can be formed in the spots where the cathodic reaction occurs [47]. The oxidation of Ce
3+

 to 

Ce
4+

 by peroxide species produce precipitation of Ce(OH)4. ZrO2 nanoparticles have been reported to 

act as a reservoirs for corrosion inhibitors, but are otherwise inert [6]. 

Finally, as briefly explained, because of the relatively large error in the thickness 

measurements, it is dubious to make assertions about the effect of a possible minor increase in coating 

thickness on going from coating A to D. After having analysed all the experimental evidence, we 

believe that the observed differences in performance are most probably not explained by the possible 

differences in coating thickness. Indeed, while coating D could be up to 20% thicker than its 

counterparts, it shows low frequency impedance values more than three times higher than the other 

coatings. Moreover, while coating C shows the putatively second largest thickness value, it is clearly 

the least performing coating. 
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5. CONCLUSIONS 

Hybrid silane coatings doped with four different combinations of CeO2 and ZrO2 nanoparticles 

and Ce(NO3)3 ions were synthetized and tested as protective protection for electro-galvanized steel 

substrates. All coatings showed very high protection as compared to an uncoated sample. 

Morphology and corrosion studies reveal that the presence of cerium ions reduces the corrosion 

rate of the metal substrate. These results show that cerium ions in combination with CeO2 and ZrO2 

nanoparticles, produce a better sealed coating, with almost no nanopores or cracks. Incorporation of 

activated CeO2-ZrO2 nanoparticles reduces the cathodic and anodic current density to lower values and 

shifts the voltage to more positive potentials. 

EIS results revealed self-healing properties of the Ce ions that were most evident in the rather 

sharp changes in both coating and charge transfer resistance values for the coating containing activated 

CeO2-ZrO2 nanoparticles. The highest impedance magnitude value of this coating suggested that the 

CeO2-ZrO2 nanoparticles are more effective as nanostructured cerium ion reservoirs and can provide 

prolonged release of the inhibitor ions. The prolonged release of cerium ions from oxide nano-

reservoirs confers longer protection of the metallic substrate. This coating can be a prospective 

candidate for the development of new environmentally friendly protective pre-treatments.  
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