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The corrosion behavior of AlMgSi alloy in a solution of 3.5 % NaCl in H2O as a function of time of 

immersion has been studied and assessed by means of electrochemical techniques. These included 

potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance 

spectroscopy (EIS) measurements and electrochemical noise measurements (EN). The corrosion rate 

expressed in terms of corrosion current density of AlMgSi alloy resulted higher than that of pure 

Aluminum. The precipitation of Mg2Si phase and the formation of the galvanic couple Al-Mg induced 

a shift of the current density towards higher values. According to electrochemical noise measurements, 

the Al-based alloy experienced a localized type of corrosion at virtually all the time of exposure. The 

hydroxide or oxide films formed over the surface of AlMgSi alloy were not totally protective. The 

electrochemical behavior of corrosion has been explained in terms of the stability of the corrosion 

products formed film. 

 

 

Keywords: Corrosion, AlMgSi alloy, Al-based alloy, Mg2Si precipitate, Electrochemical Technique, 

NaCl solution. 

 

1. INTRODUCTION 

Nowadays, a number of various cast aluminum alloys have been subject to particular study and 

attention because of their high production, high strength and low density. Cast aluminum alloys have 

been utilized in various engineering applications, especially in automotive parts. In addition, aluminum 

alloys have also been used as the primary kind of materials for the structural parts of aircraft for more 

than 8 decades because of their well-known good performance, and also to the well-established design 
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methods, manufacturing and reliable inspection techniques [1-2]. Al-Si casting alloys have been 

widely used in the automotive industry, mainly due to their high castability and elevated mechanical 

properties. Al-Si alloys are being used for several tribological applications, such as pistons, liners, 

clutches, pulleys, pivots and combustion engines [3,4]. 

Interest in the addition of magnesium to the aluminum matrix is motivated by the application of 

AlMg alloys and AlMgSi in the automotive and aerospace industries due to their high mechanical 

strength and light weight [2]. Because of their light weight, low density, good mechanical behavior and 

corrosion resistance, Al-Mg-Si alloys are considered as the most used structural materials. The 

precipitation process that occurs in these alloys has been studied extensively because of its drastic 

effect on its mechanical properties [5-7]. 

AlMgSi alloys reach up to 90 % of the total extruded volume owing to an attractive 

combination of mechanical and chemical properties, also to the extrusion and an excellent response to 

surface finishing operations [8]. Aluminum 6000 series alloys (AlMgSi and AlMgsiCu alloys) are 

greatly used as extruded pieces, e.g. in automotive, marine and architectural applications [9]. However, 

susceptibility to intergranular corrosion (IGC) may occur as a result of inadequate thermal treatment or 

alloying as reported previously [10, 11]. 

Zahavi et al. (1982) and Ambat et al. (2006) reported that Al alloys frequently exhibit a number 

of troubles related to localized corrosion attack, despite the significant corrosion resistance typically 

obtained in these alloys which are passive in the pH domain ranging from 3 to 8 [12-13]. Besides, on 

behalf of the low solubility limit of alloying elements intermetallics form, which induces 

heterogeneities that play a significant role in the local distribution and rate of cathodic and anodic 

reactions. For Al-Mg-Si alloys, intermetallics and grain boundaries are seen as the main anodic 

corrosion initiation sites, and most of intermetallics increase the corrosion rate due to their cathodic 

nature [13-16]. The main intermetallics present in Al-Mg-Si alloys are Fe-containing intermetallics 

(noble compared to the matrix) and MgSi precipitates which possess an ambivalent electrochemical 

behavior. 

Generally, it has been reported that the excess of Si (which induces a major precipitation of 

MgSi), added in Al-Mg-Si alloys mainly to obtain higher mechanical strength, leads to a greater 

intergranular corrosion susceptibility. The MgSi particles have shown, for various aluminum alloys, 

active anodic dissolution of Mg within seconds after immersion in aggressive chloride-containing 

solutions [17-20].  

Thus, the purpose of this work is to investigate the effect of alloying with Mg and Si to the Al 

element on its corrosion resistance when is exposed to an aqueous saline solution, in order to expand 

its potential applications as structural material in the automotive, naval and aerospace industries. 

 

2. EXPERIMENTAL PROCEDURE 

2.1. Materials 

The nominal chemical composition of the AlMgSi alloy was obtained by the atomic emission 

spectrometry technique by using an Spectrolab Lax M8-Windows equipment. The chemical 

composition obtained in this way, is given in Table 1. 
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The AlMgSi alloy was elaborated by mixing pieces of commercial elements of Al, Si and Mg 

(ingots with a purity of 99.8 at. %). The melting unit of alloy was of 500g, and was prepared by the 

high-frequency vacuum induction melting technique. The mixture of Al, Mg and Si was placed inside 

a silicon carbide crucible and then was melted at 760°C. In all the experiments, the molten Al-Mg-Si 

alloy was cast at 100°C superheat above the liquidus temperature into a cylinder shaped steel mould. 

 

Table 1. Chemical composition of AlMgSi alloy 

 

Elements Al Mg Si 

Atomic 

percent (%) 

93.04 2.095 4.85 

 

2.2 Sample preparation 

The produced ingots were cut by a diamond wheel cutter into small cylinder pieces. Samples 

with an exposed area ranging from 0.5 to 1.0 cm
2
 were prepared by encapsulation in epoxy resin.  

For revealing the internal structure of Al-Mg alloy, the specimens were metallographically 

prepared prior to observation and examination by optical and electron microscopy in order to gain 

valuable data about AlMgSi alloy characteristics. Metallographic preparation of encapsulated 

specimens was performed by grinding the specimens from 400 to 2000 grit paper and polished with 1 

μm alumina powder. 

 

2.3. Electrochemical Techniques. 

For the corrosion tests, a 3.5% NaCl solution was used at room temperature (≈ 25 °C). 

Potentiodynamic polarization curves were obtained by varying the applied potential from (–2000 mV) 

with respect to the free corrosion potential, Ecorr, up to 0.0 mV at a scan rate of (1 mV/s). A 

conventional three electrodes glass cell was used with a graphite rod as auxiliary electrode and a 

saturated calomel electrode (SCE) as reference. Corrosion current density values, Icorr, were calculated 

by using the Tafel extrapolation method and by taking an extrapolation interval of ± 250 mV around 

the Ecorr value once stable. Linear polarization resistance, LPR, measurements were carried out by 

polarizing the specimen from +10 to – 10 mV with respect to Ecorr, at a scanning rate of 1 mV/s 

periodically within the total immersion time of 30 days. Electrochemical impedance spectroscopy tests 

were carried out at Ecorr by using an AC signal with amplitude of ±20 mV and a frequency interval of 

0.05 Hz – 10 kHz. The electrochemical free corrosion potential as a function of time of the working 

electrodes Ecorr, was measured versus a saturated calomel reference electrode (SCE). Electrochemical 

noise measurements (EN) in both current and potential were recorded using two identical working 

electrodes and a reference electrode (SCE). The electrochemical noise measurements were made 

recording simultaneously the potential and current fluctuations at a sampling rate of one point per 
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second for a period of 1024 seconds. Removal of the DC trend from the raw noise data was the first 

step in the noise analysis when needed. To accomplish this, a least square fitting method was used. 

An ACM potentiostat controlled by a desktop computer was used for all the electrochemical 

tests. The linear polarization resistance, electrochemical impedance spectroscopy and electrochemical 

noise measurements, were performed during different days within a period of 15 days.  

 

2.4 Microstructural analysis of as-cast and corroded specimens. 

The as-cast specimen was encapsulated in epoxy resin and the metallographic preparation of 

the encapsulated specimen was performed by grinding the sample from 400 to 2000 grit paper and 

polished with 1 μm alumina slurry. The as-cast specimen surface was analyzed with a scanning 

electron microscope (SEM) with an accelerating voltage of 25 keV. Chemical microanalysis and X-ray 

chemical mapping were carried out with an energy dispersive X-ray analyzer (EDX) attached to the 

SEM. 

In order to determine the crystal structure and phases identification in the corrosion products, a 

Siemens 5000 X-ray diffractometer was employed, using Cu tube (Kα line radiation: λ = 0.15406 nm), 

and a diffracting beam graphite monochromator. The XRD patterns were recorded in the 2θ range from 

5° to 120° (with step size 0.02, time per step 0.6 s). 

 

 

 

3. RESULTS AND DISCUSSION. 

In order to explain the nature of the Al-Mg alloy plus its inherent properties and the ability of 

being processed by a traditional casting process with cost-effective use, we need to analyze their 

internal structure. In addition, we have characterized the Al-Mg alloy by electrochemical methods, in 

order to know better the properties of the alloy and then we can be able to select the material properly 

for a particular application. To provide a wide range of properties, we must know various 

electrochemical and microstructural properties to figure out new emerging uses that could provide the 

Al-Mg alloy in order to surpass the competition in demanding automotive applications. 

 

3.1 Microstructural characterization of uncorroded AlMgSi alloy by scanning electron microscopy. 

The microstructure of the as-cast AlMgSi alloy is shown in Figure 1a), this micrograph exhibits 

an inter-dendritic region. It Is well know, that microstructure is strongly dependent of solidification 

process, especially by the solidification rate. 

The observations by electron microscopy and chemical analyses using the EDS technique 

revealed that Mg and Si precipitate to a higher extent in the inter-dendritic region. 
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Figure 1. (a) Photomicrograph of un-corroded AlMgSi alloy  together with X-ray mappings of (b) Mg, 

(c) Al and (d) Si. 

 

Also, a uniform distribution of Mg in the Al matrix is observed in the X-ray mapping of Mg 

displayed in Figure 1b. In contrast, Si element was concentrated preferentially in the inter-dendritic 

spacing as shown in Figure 1d. According to the Al-Mg-Si ternary alloy phase diagram [21], in the 

aluminum rich corner, the Mg and Si act as solute elements and form a solid solution in the Al solvent 

matrix at a specific extent, forming a possible galvanic coupling site. When the concentration of Mg 

and Si exceed the limit of solid solubility in Al, then the Mg2Si phase is precipitated together with a 

lower concentration of Si. 

 

3.2. Potentiodynamic polarization curves. 

 
 

Figure 2. Polarization curve of AlMgSi alloy exposed to a 3.5% NaCl aqueous solution. 

 

Polarization curve for AlMgSi alloy is shown in Figure 2. The ternary Al based alloy displays 

an active behavior only, with an Ecorr value close to −1580 mV and a corrosion rate expressed in terms 
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of the Icorr value of the order of 0.1 mA/cm
2
. For the ternary AlMgSi alloy a depolarizing region with 

fast dissolution in the anodic branch can be observed with the possible formation of corrosion 

products, reaching an anodic limit current region at higher over-potentials of about -800 mV. 

Polarization curve exhibit Tafel behavior in both anodic and cathodic branches. It is worth 

noticing that the actual Ecorr value presented in table 2 is more active than the corrosion potential for 

pure Al (-876 mV) as reported by Zeng et al. [22]. In that work, it was studied the electrochemical and 

coupling behavior of the single Mg2Si and Si phases with α(Al) in a saline 3.5 % NaCl solution.  

The lower Ecorr value observed in Figure 2 can be explained in terms of the Mg, Si and Mg2Si 

precipitates typically formed in AlMgSi alloys. Since the Ecorr of the single Mg2Si phase measured and 

reported by Zeng et al, (2011) resulted equal to -1159 mV in the same corrosion testing conditions. 

Thus in this case, the corrosion potential of Mg2Si phase is more negative than the observed in pure 

(Al). This indicates that the Ecorr value of AlMgSi alloy reported in the present research was shifted 

towards more negative values due to the contribution of the more negative corrosion potential of 

Mg2Si phase. These findings indicate that Mg2Si particles are more susceptible to corrosion than pure 

Aluminum or Si particles at the beginning of the corrosion test. It can also be asseverated that the 

Mg2Si phase is anodic to the Al base alloy and corrosion occurs on its surface at the beginning. 

Regarding to corrosion rate expressed in terms of current density, the AlMgSi alloy exhibited a 

value near to 4 x 10
-4

 A/cm
2
, which is bigger than the current density  

(Icorr) registered for pure Aluminum (Icorr= 7.67 x 10
-7

 A/cm
2
) under the same experimental 

corrosion test conditions as reported previously [22]. Similarly, this behavior could be due to the fact 

that the current density of Mg2Si phase is 1.28 x 10
-6

, which is bigger than the Icorr for pure Al just as it 

was reported by Zeng et.al. Therefore the current density of Mg2Si phase induced a shift of the overall 

Icorr value of AlMgSi alloy towards higher values. Another factor that could have contributed to raise 

the corrosion rate of AlMgSi alloy is the higher reactivity of Mg precipitated in the inter-dendritic 

regions as compared with Al and Si, forming in this way a reactive galvanic couple site. The 

preferential chemical degradation that underwent the Mg element can be evidenced by looking at the 

revealed corrosion products included in the X-ray diffraction profile displayed in figure 13. Besides, 

this behavior can also be due to the lower standard redox potential of Mg as compared with those of Al 

and Si. Therefore, the union of magnesium and aluminum resulted in the formation of a galvanic 

couple, wherein the Mg acted as anode, and the galvanic couple resulted in an increase of the corrosion 

rate of AlMgSi alloy. 

The heterogeneities present at the surface of Al-based alloys include precipitates and 

constituent particles (intermetallic particles formed by alloying and impurity elements). At these sites 

micro-flaws in the aluminum oxide (Al2O3) film possibly exist, and there are potential differences 

between the particles and the aluminum matrix. The micro-flaws and the galvanic couples Al-Mg are 

responsible for not only the nucleation but also the growth of pits, when the alloy is exposed to an 

aggressive saline electrolyte. 
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Table 2. Electrochemical parameters obtained from polarization curves of AlMgSi alloy polarized in 

the saline 3.5M solution. 

 

Alloy Ecorr(mV) Icorr(mA/cm
2
) acatod 

(mv/decade) 

banod 

(mv/decade) 

AlMgSi -1580.9 0.1 211 77 

 

3.3. Ecorr Measurements 

Figure 3 displays the change in the Potential values as a function of time for the Al-based alloy 

exposed to the saline solution at room temperature. It is clearly observed that the corrosion potential 

becomes nobler as the immersion time elapsed up to 12 days of exposure. This behavior is because as 

Mg is easily oxidized since a thick hydroxide film is formed when it is in contact with humid air or 

immersed in water [23, 24]. However, after 12 days of immersion the Ecorr turned slightly more active 

(more negative) again. This behavior should be related with the formation of hydroxide film with 

partial protectiveness on the surface of AlMgSi alloy [23, 25, 27]. This asseveration is based on the 

formation of magnesium hydroxide and hydrated magnesium chloride, these phases were revealed by 

XRD technique, see figure 13.  

 

 

 

Figure 3. Variation of Ecorr of AlMgSi alloy as a function of immersion time in 3.5 % NaCl saline 

aqueous solution. 

 

3.4. Rp Measurements 

The dependence of the Rp values with the exposure time for AlMgSi alloy exhibited a drastic 

drop from about 500 to 3 Ohm-cm
2
 at the start of the time of immersion one day after, as shown in 

Figure 4. This behavior is due to the high reactivity and to the poor corrosion resistance of the alloy 

together with the fact that the pitting corrosion will occur at the free corrosion potential of magnesium 

and/or aluminium when exposed to chloride ions in a non-oxidizing medium [24]. Besides, as is shown 

in the polarization curve of the AlMgSi alloy exposed to 3.5 % NaCl solution (Figure 2), the 

precipitation of Mg2Si phase turned the AlMgSi alloy more anodic. However, the Rp value increased 
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from 3 Ohm.cm
2
 at the start of exposure to 174 (ohm.cm

2
) at the 10

th
 of immersion day in the 3.5 NaCl 

aqueous solution, coinciding with the corrosion potential dynamic behavior and the polarization curve, 

as expected. This behavior could be ascribed to the formation of a film of corrosion products on the 

surface of AlMgSi alloy composed by a mixture of Magnesium hydroxide, Magnesium chloride 

hydroxide, together with a minor content of SiO2 as revealed in the X-ray diffraction pattern presented 

and displayed, later in this work. In addition, when the immersion time elapsed from the 10th to the 

13th day, the Rp values decreased from 174 to 57 Ohm.cm
2
; but after that, the Rp values remained 

more or less constant. This is due to the fact that the hydroxide or oxide films forming over the surface 

of AlMgSi alloy are not being perfect and protective [25].  

 

3.5 Impedance Measurements. 

 
 

Figure 4. Variation of Rp of AlMgSi alloy as a function of immersion time in 3.5 % NaCl saline 

solution. 

 

 
 

Figure 5. Variation of Zt of AlMgSi alloy as a function of immersion time in 3.5 % NaCl saline 

solution. 
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Figure 5 displays the change in the total impedance, Zt, with immersion time for AlMgSi alloy 

exposed during various days to the saline solution of 3.5 % at. in H2O at room temperature. This plot 

exhibits a very similar trend to the graph of the variation of Rp as a function of immersion time, seen in 

Figure 4. Similarly, this behavior is due to the fact that the compounds Mg(OH)2 and Mg10Cl2(OH)18 

formed over the surface of AlMgSi alloy are soluble, therefore not being very protective.  

 

3.6 Electrochemical noise measurements 

To have an insight of the susceptibility that the AlMgSi alloy could show any kind of localized 

corrosion such as: galvanic, pitting or intergranular attack. Various electrochemical current and 

potential noise tests were performed. Examples of electrochemical noise-time series in current and 

potential, for the AlMgSi alloy immersed in the chloride solution are presented in figures 6 to 8. 

It can be seen that at the start of immersion the noise times series present stochastic behavior 

for the noise potential, and the noise current showed anodic and cathodic transients with moderate 

frequency and a relatively high intensity. This behavior suggests that this material is corroding locally 

at the beginning of immersion, probably due to galvanic effects and any film over the surface is broken 

down, and the underlying bare metal alloy corrodes locally, showing an increase in the noise current 

transients. Once the film layer is re-formed, this parameter decreases. Thus, these transients observed 

represent events of film rupture and reformation of the oxide/hydroxide layer; e.g. localized attack 

initiation. 

When the time had elapsed to 8 days of immersion (see figure 7), both the intensity and 

frequency of these transients decreased,  indicating a lower pitting or localized attack susceptibility of 

the alloy, which can be related to the growing thickness of the metal formed layer composed by a 

mixture of magnesium hydroxide and SiO2 phases. As the elapsed time of immersion advanced from 8 

to 15 days of exposure, the frequency of transients kept more or less constant, but the intensity of 

transients increased significantly, as seen in figure 8. This behavior indicates a higher pitting 

susceptibility of the AlMgSi alloy which is related to the imperfect protective nature of the Mg(OH)2 

and/or MgOHCl formed over the alloy surface.   

 

 
 

Figure 6. Electrochemical noise for AlMgSi alloy during the 0th immersion day in a 3.5 % NaCl 

saline solution. 
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Figure 7. Electrochemical noise for AlMgSi alloy during the 8
th

 immersion day in a 3.5 % NaCl saline 

solution. 

 

  
 

Figure 8. Electrochemical noise for AlMgSi alloy during the 15th immersion day in a 3.5 % NaCl 

saline solution. 

 

When using the standard deviation of the noise potential, σv, and dividing it by the standard 

deviation of the noise current, σi, the noise resistance, Rn can be obtained. Figure 9 shows the variation 

of noise resistance with time for AlMgSi alloy. 

The dependence of the Rn values with the exposure time for AlMgSi alloy exhibited a 

significant drop from about 5.5 x 10
6
 to about 3 x 10

6
 Ohm.cm

2
, when the immersion time had elapsed 

seven days, see Figure 9. This behavior is due to the decrease of the resistance to localized pitting 

corrosion of the magnesium hydroxide film formed over surface of AlMgSi alloy; besides, this 

behavior is probably due in part to the relative high solubility of this compound in the H20 from the 

solution. 

However, the Rn value increased from 3x10
6
 Ohm.cm

2
 at the seventh day of exposure to 2x10

8
 

Ohm.cm
2
 at the 10th day of immersion in the 3.5 NaCl aqueous solution. This behavior could be 

ascribed to the re-establishment of the magnesium hydroxide film together with the formation of the 

inert and passive SiO2 oxide as revealed in the X-ray diffraction pattern presented, see below. In 

addition, when the immersion time elapsed from the 10th to the 12th day, the Rn values decreased from 

2x10
8
 to 8x10

6
 Ohm.cm

2
; but after that, the Rp values remained more or less constant.  
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Figure 9. Variation of the noise resistance Rn of AlMgSi alloy as a function of immersion time in 3.5 

% NaCl saline solution. 

 

The overall Rn behavior observed reflects the presence of the film formed over the metal 

surface and the localized attack, as the main form of metal corrosion occurring over it. There is a factor 

called  

" Localization Index, IL", defined as: 

        (1) 

Where σi is the standard deviation of the noise current and irms, the root mean squared of the 

noise current. Equation 1 establishes that for IL values between 1 and 0.1, the material undergoes a 

localized corrosion type. When the IL value is between 0.1 and 0.01, there is a mixture of both types of 

corrosion, localized and general. Finally, for IL values between 0.01 and 0.001, there is a tendency 

towards a type of uniform corrosion or passive conditions. Table 3 shows the IL values that were 

determined from the time series of the electrochemical noise in current of AlMgSi alloy exposed to 

3.5% NaCl aqueous solution at different times of immersion. It can be concluded from table 3, that the 

AlMgSi alloy underwent a localized type of corrosion, during almost all the time of exposure, but with 

exception of the tenth day of immersion, where the Al-based alloy experienced mixed corrosion, 

localized and general. 

In addition, aluminum alloys typically undergo localized corrosion, as a result of the highly 

protective aluminum oxide film which forms on the general surface and the presence of secondary 

phase particles (e.g., Mg2Si precipitates formed in AlMgSi alloy). Pitting corrosion is considered to be 

one of the principal mechanisms for degradation of Al alloys strengthened by intermetallic 

precipitates. 
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Table 3. Localization index, “LI”, determined from the time series of the electrochemical noise in 

current 

 

Immersion time (days) Localization index, LI 

0 1.0 

7 0.344 

8 0.273 

10 0.077 

11 0.903 

12 0.917 

13 0.495 

15 0.250 

 

3.7. EIS measurements. 

The corrosion behaviour of the AlMgSi alloy specimen was examined using EIS as a function 

of immersion time in 3.5% NaCl solution. The impedance data obtained for Al-based alloy over 

different periods are displayed in Figures 10, 11 and 12 in the form of both Nyquist and Bode plots. 

The Bode impedance diagram shows flat regions at high and two slopes at mid and low 

frequencies, corresponding to the solution resistance at high frequency and the charge transfer 

resistance at low frequency, see Figure 10. The slopes corresponds to the film and double layer 

capacitances and relates to one or two RC time constant. 

Quasi-inductive components in the low frequency region were observed in the AlMgSi alloy, at 

all exposure times, better observed in the EIS Nyquist plots reflected in a second peak in the phase 

angle graph related to a second or third time constant, as shown in Figures 11 and 12. The inductive 

behavior is usually explained in terms of the relaxation phenomenon of reaction intermediates [26].  

The reaction intermediates could be originated because the anodic dissolution of magnesium 

occurs together with a phenomenon called the negative difference effect (NDE). In the experimental 

tests, NDE effect is characterized by an unexpected increase of the cathodic hydrogen evolution 

reaction when the anodic over-potential is increased.  

Song et al, 1997a; Song et al 1997b [23, 27] proposed a new mechanism for the occurrence of 

NDE. The authors explained that the formation of a partially protective layer of Mg(OH)2 has an 

important effect in the corrosion behavior of magnesium. In the present work the presence of 

magnesium hydroxide in the corrosion products is confirmed by the structural characterization of 

corrosion products by XRD technique as shown in Figure 13. 

Song et al, 1997a; Song et al 1997b considered the following reactions in their discussion of the 

NDE: 

 (cathodic partial reaction)     (2) 

 (anodic partial reaction)    (3) 

  (chemical reaction NDE) (4) 

 (overall reaction)  (5) 

 (corrosion product formation)   (6) 
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The dissolution process mechanism depends on the rise of the film-free surface areas with 

increasing anodic potential on which the anodic and cathodic partial reactions shown in Equations 2 

and 3, can take place more freely than on the surface coated by a film. 

The chemical reaction NDE shown in equation 4 represents the chemical oxidation of Mg
+ 

to 

Mg
2+

. The overall reaction displayed in equation 5 is the result of the sum of equations 2, 3 and 4. 

Finally, equation 6 is the responsible for the formation of Mg(OH)2 corrosion product. 

For higher anodic overpotentials, the rate of the chemical reaction is raised due to the increased 

concentration of Mg+ produced by equation 3, and there is a drastic increase in the amount of 

hydrogen evolved, at localized sites. 

 

 
 

Figure 10. Bode diagrams for AlMgSi alloy corroded in the aqueous 3.5 % NaCl saline solution at 

room temperature. 

 

 
 

Figure 11. Bode phase diagrams for AlMgSi alloy corroded in the aqueous 3.5 % NaCl saline solution 

at room temperature. 
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As a matter of fact, there are several causes of inductive features in the electrode impedance. 

For example, when the potential shifts towards more negative values or time dependent change of the 

electrode interface induces the dissolution reaction, the inductive feature is expected. Regarding to Al-

based alloys, Keddam et al. [26] and Chu-nan et al. [28] suggested that the inductive behavior is more 

likely promoted by the declination of the protectiveness of the oxide film.  In the present work, a 

hydroxide film with partial protectiveness is formed as the corrosion products of the AlMgSi alloy 

over the surface, as revealed in the X-ray diffraction pattern shown in Figure 13. It is suggested that 

the inductive phenomenon, also is associated with the weakening of the effectiveness of this hydroxide 

film. 

 

 
 

Figure 12. Nyquist diagrams for AlMgSi alloy corroded in the aqueous 3.5 % NaCl saline solution at 

room temperature. 

 

3.8. Structural characterization of corrosion products by X-Ray Diffraction (XRD). 

 
 

Figure 13. X-ray diffraction patterns of corrosion products of AlMgSi alloy after immersion during 20 

days in 3.5 % NaCl saline solution. 
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Figure 13 shows the XRD profiles of corrosion products of AlMgSi alloy after exposure to 3.5 

% NaCl saline solution. Diffraction peaks revealed the existence of the following phases: magnesium 

hydroxide (crystal system trigonal), hydrated magnesium chloride hydroxide, silicon dioxide, 

magnesium and Rectorite mineral (Crystal structure monoclinic). These results indicate preferential 

corrosion attack of Mg, this behavior being due to its high reactivity or low electrode potential as 

compared with the Aluminum electrode potential. Eliezer et al. [29] and Gutman 1994 [30] stated that 

the reactivity of Magnesium easily leads to corrosion even in the atmosphere. 

The Mg detected in the diffractogram,  displayed in figure 13, was formed according to 

equation (3), or could have also been detached from the interdendritic regions of AlMgSi alloy (see 

figure 1) and afterwards deposited in the corrosion products. 

Is important to highlight that there were no evidence of corrosion products associated with 

aluminum in the X-ray profile, as the general reaction for corrosion of Al is represented in equation 7. 

      (7) 

The SiO2 phase which was revealed in the X-ray diffraction profile was formed by the reaction 

of silicon contained in the AlMgSi alloy and the H2O of the solution according to the inverse reaction, 

shown in equation 8: 

     (8) 

Equation (8) is representative of the half-reaction reduction of silica. This half-reaction has a 

standard reduction potential, E° equal to -0.86 V.  

The half-reduction reactions of aluminum and magnesium, together with their respective 

standard reduction potentials are shown in equations 9 and 10. 

      (9) 

      (10) 

According to equations 9 and 10, the standard reduction potential of Mg
2 +

 resulted to be the 

most negative, therefore, will be greater the tendency for the reverse reaction to occur, see equation 11. 

        (11) 

Also, the fact that the standard reduction potential of the Mg
2+

 is the most negative, indicates 

that Mg is more reactive or less stable compared to Al or Si in the experimental arrangement under 

study. Therefore, according to the above explanation, the Mg(OH)2 phase revealed in the diffraction 

profile of Figure 13, is present in a higher content. 

Once formed the Mg
2+

 ion, it will react with OH
- 
to form Mg (OH)2 according to equation 6. 

Also, when the Mg
2+

 ion chemically interacts with the OH
- 

and Cl
-
 ions, then the compound 

(Mg10Cl2(OH)20) is formed according to the reaction shown in the equation 12: 

    (12) 

It is worth noticing that the Magnesium Chloride Hydroxide formed by equation 11 presents a 

slight difference of the content of OH ions as compared with the hydroxide (Mg10Cl2(OH)18)  revealed 

in the X-Ray diffraction pattern shown in figure 13. This difference in stochiometric is probably 

because this hydroxide compound can exist with a little deviation in its stochiometry. 

The rectorite mineral could have been formed by a complex mixture of the hydrated oxides; 

besides, in the solution is present a ions cocktail of Na
+
, Cl

-
 together with H

2
O and Ca impurities, 

which justifies its presence in the other compounds that form the mineral. 
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4. CONCLUSIONS 

As the concentration of Al, Mg and Si of ternary AlMgSi alloy exceeded the limit of solid 

solubility in Al then the Mg2Si phase was precipitated together with a lower concentration of Si. 

Besides, pure magnesium was precipitated in the inter-dendritic regions of AlMgSi alloy. 

The corrosion rate expressed in terms of corrosion current density of AlMgSi alloy resulted 

higher than that of pure Aluminum. This behavior could be due to the fact that the current density of 

Mg2Si phase is bigger than the Icorr for pure Al. 

In addition, the formation of the galvanic couple Al-Mg induced a shift of the corrosion rate 

towards higher values. 

According to the structural characterization of corrosion products by X-ray diffraction 

technique, the following phases were revealed: Magnesium hydroxide, hydrated magnesium chloride 

hydroxide, Silicon dioxide, Magnesium and Rectorite mineral. 

The variation trend of the Ecorr, Rp and Zt values with the exposure time, indicated that the 

hydroxide or oxide films formed over the surface of AlMgSi alloy were not fully protective. 

According to electrochemical noise measurements the Al-based alloy experienced a localized 

type of corrosion at essentially all immersion days. 

Quasi-inductive components in the low frequency region were observed in the AlMgSi alloy at 

all immersion times in the nyquist plot with a second peak in the phase angle graphic related to a 

second time constant. The inductive behavior is related with the relaxation phenomenon of reaction 

intermediates which are phases that form previously to the formation of the corrosion products 

composed mainly by hydroxides of magnesium. 
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