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The inhibition of mild steel corrosion in 1 M HCl by 17 furan derivatives was investigated 

experimentally using potentiodynamic polarization measurements. The furan derivatives inhibit the 

mild steel corrosion. The experimental inhibition efficiency (IE) was used in a Quantitative Structure-

Activity Relationship (QSAR) study. Dragon software was used to calculate the molecular descriptors. 

Penalized multiple linear regression (PMLR) was applied as a variable selection method using three 

penalties namely, ridge, LASSO, and elastic net. A number of 8 and 38 significant molecular 

descriptors were selected by LASSO and elastic net methods, respectively. The most significant 

descriptors namely, PJI3, P_VSA_s_4, Mor16u, MATS3p, and PDI were selected by both LASSO and 

elastic net methods. The elastic net results show low mean-squared error of the training set ( trainMSE ) 

of 0.0004 and test set ( testMSE ) of 5.332. The results confirm that the penalized multiple linear 

regression based on elastic net penalty is the most effective method to deal with high dimensional data. 

 

 

Keywords: Polarization; corrosion inhibitors; furan derivatives, high dimensional QSAR, penalized 

multiple linear regression (PMLR) 

 

1. INTRODUCTION 

Metal corrosion causes a huge loss in resources and industrial equipment especially in acidic 

medium. Acid solutions are the most corrosive media because of their widely use in industry [1]. The 
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most reported corrosion inhibitors are organic compounds with heteroatoms such as oxygen, nitrogen, 

sulfur and phosphorous and compounds containing multiple bonds [2,3]. Experimental and theoretical 

methods have been used to investigate the corrosion inhibition efficiency of many organic compounds 

[4]. Computational methods has become more developed and increasingly used in the corrosion 

inhibition studies [5]. Quantitative structure activity relationship (QSAR) is a computational modeling 

method which has been applied in many disciplines of chemistry [6,7]. 

A good QSAR model should possess high prediction power and prediction reliability [8]. In the 

QSAR modeling area, compounds are treated as observations and descriptors are treated as 

explanatory variables. Quantum chemical calculations are the traditional methods used to calculate the 

molecular descriptors. In addition, software such as Molconn-Z, CODESSA and Dragon are used to 

calculate descriptors based on the molecular structures [9]. Dragon software has considerable 

applications in QSAR and scientific studies. A number of 4885 descriptors can be calculated using 

Dragon software version 6.0 [10]. 

A problem of high dimensionality in QSAR modeling, which the number of molecular 

descriptors, p, exceeds the number of compounds, n, is one of the new challenges [11]. Statistical 

issues associated with modeling high-dimensional QSAR include model overfitting and 

multicollinearity [12,13]. Classical statistical methods such as multiple linear regression (MLR) cannot 

solve overfitting and multicollinearity issues. Several methods have been proposed to deal with high 

dimensional data problem. For example, dimensional reduction methods act by representing the 

original explanatory variables with orthogonal components such as principle component analysis 

(PCA) [14], and partial least squares (PLS) [15]. Other methods such as penalized regression methods 

act to do simultaneously shrinkage and variable selection. 

Variable selection is the main objective in high dimensional data [16]. The aim of selecting 

optimal subset of molecular descriptors is to reduce the descriptors number to those that contain 

relevant information, and thereby to improve QSAR modeling. This should be observed in terms of 

predictive performance (by decreasing the effect of multicollinearity) and interpretability (to prevent 

overfitting). A procedure called penalization is used for variable selection in high dimensional data. 

This penalization attaches a penalty term ( )P β  to the ordinary least squares (OLS) to get a better 

estimate of the prediction error by avoiding overfitting and multicollinearity. 

In this study, corrosion inhibition efficiencies of furan derivatives on mild steel in 1 M HCl 

solutions were evaluated using electrochemical potentiodynamic polarization. Dragon software version 

6.0 was used to calculate the structural-based descriptors. A high number of molecular descriptors with 

high dimensionality were obtained. High dimensional data is more informative to develop better 

models; however, it is a big challenge to the classical variable selection methods to deal with such 

data. Therefore, the aim of this paper is to apply new proposed variable selection methods (i.e. 

Penalized multiple linear regression (PMLR) based on ridge, LASSO, and elastic net penalties) in the 

QSAR studies. In addition, the study aims to evaluate 17 furan derivatives as corrosion inhibitors for 

mild steel in 1 M HCl solution. 
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2. MATERIALS AND METHODS 

2.1. Experimental Preparation of Materials and Inhibitors 

A number of 17 derivatives of furan were obtained from Sigma-Aldrich and investigated as 

corrosion inhibitors of mild steel in 1 M HCl (Table 1). The test solution (1 M HCl) was prepared from 

analytical grade hydrochloric acid (37 wt. %). The composition of mild steel specimens (wt%) was: C-

0.036, Mn-0.172, Cu-0.082, Ni-0.108, Cr-0.053, Al-0.035, Zr-0.146 and Fe balance. The surface of the 

steel was abraded using 240, 320, 400, 600, 800 and 1500 grades of sand papers. The specimens were 

well cleaned with deionized water and then again by acetone. 

 

2.2. Experimental Potentiodynamic Polarization Measurements 

Potentiodynamic polarization measurements were used to investigate the inhibition efficiency 

of the inhibitors. Potentiodynamic polarization measurements were carried out at room temperature 

(25±1°C) using 250 ml of 1 M HCl electrolyte with and without the addition of 0.005 M of the 

inhibitors. Before the polarization measurements, the system was stabled within 30 min to reach open 

circuit potential (OCP) steady state. Polarization curves were recorded at a scan rate of 10 mV/s with a 

scan range from -0.25 and +0.25 V with respect to OCP. The Autolab Potentiostat/Galvanostat 

instrument was used to carry out potentiodynamic polarization measurements by recording the Tafel 

polarization curve. The used cell was a three-electrode cell assembly that contained a 1 cm
2
 coupon of 

a mild steel embedded in a specimen holder. The mild steel specimen acted as working electrode 

(WE). A platinum electrode was used as a counter electrode (CE). A saturated calomel electrode (SCE) 

was used as the reference electrode (RE). 

 

2.3. High-Dimensional QSAR Dataset 

The dataset consisted of 17 furan derivatives used as corrosion inhibitors. The molecular 

structures of the dataset compounds were drawn using Chem3D software. The molecular structures 

were optimized using the molecular mechanics MM2 method and then again by a Molecular Orbital 

Package (MOPAC) module in Chem3D software. Dragon software Version 6.0 was used to calculate 

the molecular descriptors based on the optimized molecular structures [10]. A total of 1951 descriptors 

were calculated. The dataset was randomly split into 70% training set and 30% test set. 

 

2.4. High-Dimensional QSAR Variable Selection 

The most informatics descriptors are needed to be selected precisely from the whole dataset 

molecular descriptors. The problem of variable selection is one of the most prominent problems in 

QSAR study. The variable selection is to find a subset of significant descriptors to build a QSAR 

model with better predictive accuracy compared to a model built with whole dataset descriptors. In this 

work, the obtained dataset was high dimensional data. Unlike classical variable selection methods, 
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penalization methods can deal with high-dimensional data. In this paper penalized multiple linear 

regression was applied using three well-known penalties, ridge, LASSO, and elastic net. Although the 

ridge penalty cannot do variable selection, it is useful to deal with multicollinearity. 

In general, classical linear regression assumes that the response variable 
1 n

y = (y , ...,y )  is a 

linear combination of p molecular descriptors 
1 p

x , ...,x , an unknown parameter vector 
1 p

β = (β , ...,β )  , 

and an additive error term 
1 2

e = (e , ...,e ) . When n p  the usual estimation procedure for the 

parameter vector β  is the minimization of the residual sum of squares (RSS) with respect to β  

ˆ argmin argmin .RSS = 
OLS β β
β = (y -Xβ) (y -Xβ)   (1) 

Then, the OLS estimator ˆ  -1

OLS
β = (XX) Xy  is obtained by solving Eq. (1). The OLS estimator 

is optimal within the class of linear unbiased estimators if the molecular descriptors are not correlated. 

However, multicollinearity occurs if there are highly correlated molecular descriptors in the regression 

model. This can lead to problems in the computation of the OLS estimator. In the case of high 

dimensional data, n p , both the design matrix X  and the matrix X X  no longer have full rank p  . 

Thus,  -1
(X X) cannot be calculated and the OLS estimator cannot be solved. 

The penalization methods are based on penalty terms and should yield unique estimates of the 

parameter vector β . An improvement of the prediction accuracy can be achieved by shrinking the 

coefficients, and an improvement of the interpretability can be done by setting some of the coefficients 

to zero. Thereby, the obtained QSAR regression models should contain only the relevant molecular 

descriptors which are easier to interpret. In general, the penalized multiple linear regression (PMLR) is 

defined as: 

( ).PMLR P
 (y - Xβ) (y -Xβ) β   (2) 

The estimates of the penalized parameter vector are obtained by minimizing Eq. (2) with 

respect to β as shown by Eq. 3: 

ˆ argmin .PMLR PMLR
β

β   (3) 

The penalty term ( )P β  depends on the tuning parameter   which controls the shrinkage 

intensity. For the tuning parameter 0  , the obtained result is the OLS estimators. On the contrary, 

for large values of  , the influence of the penalty term on the coefficient estimates will increase. 

Therefore, the penalty region determines the properties of the penalized estimated parameter vector, 

whereas the desirable molecular descriptors will be the selected variables. Different forms of the 

penalty terms have been introduced in the literature such as ridge, LASSO, and elastic net penalties. 

 

2.4.1. Ridge Regression 

One of the most popular penalties is ridge regression (RR), which introduced by Hoerl and 

Kennard [17] as an alternative solution to OLS when there is multicollinearity between molecular 

descriptors. The ridge regression solves the RSS using
2

1

( )
p

j

P 


  jβ β . Consequently, the ridge 

estimate is defined by the Eq. (4): 
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2

1

ˆ arg min ( ).
p

Ridge

j

SSR 


  β jβ β   (4) 

In RR, the tuning parameter   controls the amount of shrinkage, but never set molecular 

descriptor coefficients to be exactly equal zero. Therefore, in high dimensional data when n p , the 

RR will not perform variable selection. Although RR does not have the variable selection property, it 

is preferred in high dimensional data since highly correlations between molecular descriptors is 

expected. Unlike the OLS estimates, the RR is biased. Therefore, this penalized method accepts a little 

bias to reduce the variance and the mean squared error (MSE). Since the RR cannot perform selection 

of the variables, further penalization methods were developed such as LASSO and elastic net. 

 

2.4.2. Least Absolute Shrinkage and Selection Operator (LASSO) 

Tibshirani [18] proposed the least absolute shrinkage and selection operator (LASSO) as a 

penalty to perform the variable selection by setting some variable coefficients to zero. It does both 

continuous shrinkage and automatic variable selection simultaneously. Similar to the RR, the LASSO 

estimates are obtained by adding the penalty of: 
1

( )
p

j

P 


  jβ β  to the RSS. The PMLR estimates 

using LASSO is given by Eq. (5): 

1

ˆ arg min ( ).
p

LASSO

j

SSR 


  β jβ β   (5) 

Depending on the property of the LASSO penalty, some coefficients will be exactly equal to 

zero. Hence, LASSO performs the variable selection. Although LASSO is widely used in many 

applications, it has some drawbacks. One of the drawbacks, it is not robust to high correlation among 

molecular descriptors and will randomly choose one of these descriptors and ignores the rest. Another 

drawback of LASSO in high dimensional data is that the maximum number of selected descriptors is 

equal to n even if there is more descriptors with non-zero coefficients in the final model. Therefore, 

elastic net penalized method was developed to overcome the drawbacks of the LASSO.  

 

2.4.3. Elastic Net 

Elastic net is a penalized method for variable selection. It was introduced by Zou and Hastie 

[19] to deal with the drawbacks of LASSO. Elastic net tries to merge both LASSO and ridge penalties, 

by using ridge regression penalty to deal with high correlation problem and taking the advantage of 

LASSO penalty of variable selection property. The elastic net estimates for PMLR are defined by Eq. 

(6): 

2

1 2

1 1

ˆ argmin ( ).
p p

elastic

j j

SSR  
 

   β j jβ β β   (6) 

As it can be observed by Eq. (6), elastic net depends on non-negative two tuning 

parameters 1 2,  . According to lemma 1 in Zou and Hastie [19], to find the estimates of ˆelasticβ  in Eq. 

(6), the given data set ( , )y X  is extended to an augmented data ( , ) 
y X and defined by Eq. (7): 
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1

2
( , ) 2 ( ,1)

2

(1 ) ,n p p n p



 

 

   
      

  

X y
X y

0Ι
  (7) 

As a result of this augmentation, the elastic net can be written and solved as a LASSO penalty. 

Hence, the elastic net can select all p  molecular descriptors in the high dimensional when n<p and not 

only n molecular descriptors since 
X  has rank p . 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Experimental Potentiodynamic Polarization Measurements 

Tafel polarization curves were recorded for mild steel corrosion in 1 M HCl in the presence and 

absence of the inhibitors (Figure 1). Tafel curves were analyzed and the values of the electrochemical 

parameters are given in Table 2. The IE  was calculated using the Eq. (8): 

% 100corr corr

corr

i i
IE

i


    (8) 

where 
corri  and corri  are corrosion current densities in the absence and presence of the 

inhibitors, respectively. The IE values are given in Table 2.  

 

Table 1. Names and structures of the furan derivatives used as corrosion inhibitors 

 

No. Compound Abbreviation Structure 

1 Ethyl 5-(chloromethyl)-2-furoate ECMF 

 

2 5-(2-Furyl)-1,3-cyclohexanedione FCH 

 

3 2-Furanmethanethiol FMT 

 

4 2-Furonitrile FN 

 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

3574 

5 5-Bromo-2-furoic acid BFA 

 

6 5-Methylfurfurylamine MFA 

 

7 trans-3-Furanacrylic acid FAA 

 

8 2-Ethylfuran EF 

 

9 Methyl 2-furoate MF 

 
10 5-Methylfurfural MFF 

 
11 2-Furoic acid FA 

 

12 5-(Dimethylaminomethyl)furfuryl 

alcohol hydrochloride 

DMFA 

 

13 Methyl 2-methyl-3-furoate MMF 
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14 2-Furoyl chloride FC 

 

15 Furfuryl alcohol FFA 

 

16 Furfurylamine FAM 

 

17 2-(2-Nitrovinyl)furan NVF 
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Figure 1. Tafel polarization curves of mild steel in 1 M HCl without and with 0.005 M of furan 

derivatives 
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It is clear from the Tafel curves, Figure 1, that the addition of the furan derivatives affected 

both the cathodic and anodic parts of the curves, indicating that the furan derivatives act as cathodic 

and anodic inhibitors. In addition, the values of both anodic (ba) and cathodic (bc) Tafel constants, 

Table 2, are changed in the presence of the inhibitors. This also confirms the mixed mode inhibition 

mechanism of the inhibitors. The corrosion current density (icorr) was calculated by extrapolating 

anodic and cathodic Tafel lines. The results reveal that in the presence of the inhibitors, the values of 

corrosion current densities (icorr) are decreased. This behavior reflects the ability of furan derivatives to 

inhibit the corrosion of mild steel in 1 M HCl solution. The corrosion inhibition efficiencies of the 

furan derivatives ranged from (96.54% for ECMF) to (35.96% for NVF). The differences in the 

inhibition efficiencies are due to the electronic structures of inhibiting molecules, steric factor, 

aromaticity, electron density at the donor site, molecular area and molecular weight of the inhibitor. 

Corrosion inhibitors act by the adsorption on the metal’s surface via lone pair and π-electrons donated 

by the heteroatoms and multiple bonds. The higher number of lone pair and π-electrons increases the 

electron density on the molecule and causes a strong interaction with the metal’s surface. For example, 

the presence of chloride atom (–Cl) on the ECMF molecule together with other three heteroatoms 

increases the electron density on the molecule and contributes to enhance the inhibition efficiency to 

attain 96.54%. In addition, the high inhibition efficiencies of the FCH, FMT, FN and BFA derivatives 

of 89.93, 89.44, 89.03 and 88.60%, respectively could be attributed to the presence of different 

heteroatoms and functional groups that can donate electrons. Furthermore, the obtained inhibition 

efficiency of MFA and FAM inhibitors is 84.77 and 41.75%, respectively. The MFA molecule gives 

more inhibition efficiency compared to FAM. This enhanced efficiency could be attributed to the 

replacement of hydrogen atom in furan ring by an alkyl group (–CH3). Such group with an inductive 

effect (+I), would assist to increase electron density and cause an enhancement in the inhibition 

efficiency. Moreover, the lower inhibition for NVF of 35.96% can be attributed to the presence of the 

nitro group (–NO2) as an electron-withdrawing group which maybe causes electron deficiency on the 

furan ring.  

 

Table 2. Corrosion inhibition efficiency (IE) and electrochemical parameters obtained from Tafel 

polarization curves  

 

Inhibitors ba 

(mV dec
-1

) 

bc 

(mV dec
-1

) 

Ecorr 

(V) 

Icorr 

(µA cm
-2

) 

IE (%) 

Blank 

(1 M HCl) 

424 474 -0.873 655.10 - 

ECMF 121 168 -1.094 22.63 96.54 

FCH 111 129 -0.417 65.94 89.93 

FMT 149 163 -1.271 69.14 89.44 

FN 98 158 -0.402 71.86 89.03 

BFA 106 172 -0.995 74.64 88.60 

MFA 138 244 -1.392 99.77 84.77 

FAA 104 134 -0.238 142.50 78.24 

EF 160 217 -1.002 148.40 77.34 
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MF 134 175 -0.900 152.30 76.75 

MFF 151 198 -0.796 156.30 76.14 

FA 156 221 -0.857 156.80 76.06 

DMFA 142 216 -0.785 183.50 71.99 

MMF 256 367 -1.275 209.30 68.05 

FC 165 249 -0.717 234.20 64.25 

FFA 145 235 -0.628 301.80 53.93 

FAM 245 357 -0.935 381.60 41.75 

NVF 137 695 -0.564 419.50 35.96 

 

3.2. Variable Selection 

In order to select the most informatics descriptors with PMLR, the 17 compounds were 

randomly divide into a training set of 70% and a test set of 30%. The training set was used to select the 

descriptors by finding the optimal value for the tuning parameter. The test set was then used to validate 

the quality of the selected descriptors. The partition process of selecting the training and test 

observations was repeated 100 times. To find the optimal values of the tuning parameters (  ) for both 

ridge and LASSO, and the pair of two tuning parameters 1 2( , )  for elastic net, K-fold cross-validation 

method was used with K=5. The tuning parameter for ridge and LASSO was 3.319 and 1.286, 

respectively. For the tuning parameters of elastic net, the solution was different because this method 

required prior value of 2  to transform the original training dataset to the new augmented training 

dataset. A sequence of values for 2  was given, where 20 100  . For each value of 2 , a 5-fold 

cross-validation was performed to select the remaining tuning parameters. The best value for the pair 

of both tuning parameters was (0.174, 0.01).  

Two statistical criteria were used to evaluate PMLR in variable selection, the mean-squared 

error of the training set 
2

, ,

1

ˆ( ( ) / )
trainn

train i train i train train

i

MSE y y n


   and the number of the selected 

molecular descriptors. Figure 2 displays the corresponding boxplots of the training error for the three 

used PMLR methods. It is clear that elastic net has less variability among the three penalized methods. 

 

 
 

Figure 2. Training error boxplots of the PMLR methods for 100 random partitions 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

3579 

The two evaluation criteria for PMLR are summarized in Table 3. Concerning the 
trainMSE  

criterion, the 
trainMSE value for the elastic net penalty of 0.0004 was smaller than the 

trainMSE  values 

of 0.9138 for LASSO and 1.8942 for ridge.  

 

Table 3. Median values of the evaluation criteria for the PMLR methods 

 

 
trainMSE  No. of selected  

molecular descriptors
 

Ridge 1.8942 1951 

LASSO 0.9138 8 

Elastic net 0.0004 38 

 

In terms of the number of selected molecular descriptors, elastic net selected 38 descriptors, 

whereas LASSO selected 8 descriptors. In ridge penalty, there was no variable selection; therefore, 

whole variables (1951 descriptors) were selected. It can be observed that elastic net penalty selected 

descriptors larger than the number of compound. In contrast to elastic net, the number of selected 

descriptors by LASSO was lower than the number of compounds. Elastic net selected more descriptors 

compared to LASSO because of the existence of several correlations among the descriptors. Elastic net 

has the ability to deal with the grouping effect by selecting the correlated molecular descriptors 

together or to leave them out together. On the contrary, LASSO can deal with grouping effect by 

selecting only one descriptor randomly from the group of correlated descriptors. For example, elastic 

net selected Mor16i, Mor25p, Mor16p, Mor16u, Mor11m, Mor19m, Mor23m, Mor31m, Mor16e, and 

Mor30e descriptors that belong to 3D-MoRSE group. The correlations between most of these 

descriptors were statistically significant and ranged from 0.55 to 0.96. Figure 3 shows the frequency of 

the most selected molecular descriptors for both LASSO and elastic net penalties over 100 splits. A 

number of 28 descriptors, which possessed frequencies higher than 75%, were presented in Figure 3. 

Significant descriptors with higher than 95% frequency were selected using elastic net such as 

MATS3v, MATS3p, P_VSA_s_4, PJI3, Mor16u, and Mor16e. The most frequent descriptors selected 

using LASSO were PJI3, Mor16u, and P_VSA_s_4 with frequency higher than 55%. The PJI3, 

P_VSA_s_4, Mor16u, MATS3p, and PDI descriptors were the most significant descriptors since they 

were selected by both LASSO and elastic net methods. 
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Figure 3. Frequency of the most selected molecular descriptors 

 

3.3. Validation of the PMLR 

Test set was used to validate the PMLR using two statistical criteria namely, the mean-squared 

error of the test set
2

, ,

1

ˆ( ( ) / )
testn

test i test i test test

i

MSE y y n


   and the Pearson correlation between the 

predicted and the experimental IE in the test set. The validation results are reported in Table 4. The 

lowest value for testMSE of 5.332 was obtained for elastic net penalty. The Pearson correlation is 

defined as a correlation between the true IE values and the predicted IE of the test set. The higher 

Pearson Correlation value of 0.972 was achieved by elastic net. The higher value of the Pearson 
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correlation, the closer fitted of the predicted IE. It is clear that elastic net was the best in terms of the 

validity of PMLR followed by LASSO. 

 

Table 4. Median values of the validation criteria for the PMLR methods  

 

 
testMSE  Pearson 

Correlation 

Ridge 9.288 0.641 

LASSO 7.086 0.738 

Elastic net 5.332 0.972 

 

3.4. Interpretation of Descriptors 

The interpretation of the descriptors gives insight into the related factors to the corrosion 

inhibition efficiencies of the inhibitors. The most significant descriptors which were selected by both 

LASSO and elastic net methods were PJI3, P_VSA_s_4, Mor16u, MATS3p, and PDI. The PJI3 (3D 

Petitjean shape index) is one of the geometrical descriptors. It was derived based on the molecular 

shape using the information of the geometry matrix [20]. The descriptor P_VSA_s_4 (P_VSA-like on 

I-state, bin 4) belongs to P_VSA-like descriptors (the amount of van der Waals surface area (VSA) 

having a property in a certain range). P_VSA descriptors describe several properties such as 

electrostatic, lipophilic, steric and pharmacophoric in terms of molecular surface [21]. The 

P_VSA_s_4 descriptor has been proposed based on the intrinsic state (I-state) property. The intrinsic 

state (I-state) refers to the ratio of π and lone-pair electrons over the count of σ bonds in the molecular 

graph. The descriptor Mor16u (signal 16 / unweighted) is one of 3D-MoRSE (3D-Molecule 

representation of structures based on electron diffraction) descriptors. The 3D-MoRSE descriptors 

were proposed based on electron diffraction studies which used to prepare theoretical scattering curves 

[22]. The MATS3p (Moran autocorrelation of lag 3 weighted by polarizability) descriptor is type of 

2D autocorrelations descriptors that derived based on the molecular topology with the consideration of 

chemical information by specified weights of the molecule atoms. The MATS3p descriptor is related 

to polarizability property of molecule atoms [23]. The descriptor PDI (Para-Delocalization Index) is 

one of the molecular properties descriptors. Delocalization index quantified the π-delocalization 

between two atoms. The PDI descriptor has been derived based on electron delocalization as a 

criterion of aromaticity [20]. 

 

 

 

4. CONCLUSION  

Experimental study was carried out to evaluate 17 furan derivatives as corrosion inhibitors for 

mild steel in 1 M HCl using potentiodynamic polarization measurements. The experimental results 

showed the effective performance of the furan derivatives as corrosion inhibitors. The corrosion 
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inhibition efficiencies of the studied inhibitors ranged from 96.54 to 35.96% for ECMF and NVF, 

respectively. Theoretical high dimensional QSAR modeling study was conducted using the obtained 

experimental data. Dragon software was used to calculate the molecular descriptors based on the 

molecular structures of the inhibitors. Penalized multiple linear regression (PMLR) based on ridge, 

LASSO, and elastic net were applied. Elastic net penalty show low mean-squared error of the training 

set and test set of 0.0004 and 5.332, respectively. The results show that the elastic net penalty was the 

best method to deal with high dimensional data followed by LASSO. Five significant descriptors (i.e. 

PJI3, P_VSA_s_4, Mor16u, MATS3p, and PDI) were selected by both LASSO and elastic net 

methods. Therefore, Dragon software is a useful tool that can generate more molecular descriptors that 

are informative to describe the corrosion inhibition properties of the inhibitors. Penalized multiple 

linear regression (PMLR) based on different forms of the penalty terms such as LASSO and elastic net 

can successfully deal with high dimensional data to select the most significant descriptors. 
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