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It is well known that among of all the components of hydrotreating systems used in the industrial 

processes, the heat exchangers that pre-heat the reactor suffer the greatest degree of degradation by 

pitting corrosion due to extreme temperature exposure. Typically, two different mathematical analysis 

were used to estimate the probability of failure by metal loss as a consequence of pitting corrosion 

mechanism: short-term and long-term corrosion rate (STCR and LTCR, respectively), as designated by 

API 510 standard method. However, the results are often misunderstood when the difference between 

the calculated data of STCR and LTCR is large. For this reason, in this research the STCRs and 

LTCRs models were fitted to a generalized extreme value distribution (GEVD) to characterize the 

metal loss that take place in four heat exchangers, as well as to determine what kind of corrosion rate 

model is better for predicting the metal loss estimation. According to the results obtained in this 

research, the STCR model appears to be the most appropriate analysis for estimating future metal loss 

by pitting corrosion for the heat exchangers reactors used in hydrotreating systems. 
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1. INTRODUCTION 

The global demand for diesel fuel has been rising rapidly, even faster than for gasoline 

transportation vehicles [1]. The principal reason for this, undoubtedly, is the fuel efficiency of diesel 

engines, which are 25-40% more fuel-efficient than gasoline engines. However, untreated diesel 

typically has a relatively high sulfur content [2]. This high sulfur content leads to SOx formation when 

the fuel is burned. During the last part of the twentieth century, in Mexico, the diesel was hydrotreated 

in the oil refineries to reduce the sulfur content to 500 ppm. However, the Mexican government has 

recently established lower maximum sulfur content of 15 ppm for diesel, which is referred to as ultra-

low sulfur diesel (ULSD) [3]. To produce ULSD, Pemex (a Mexican state-owned and gas company) 

considers it necessary to renew 17 of the existing plants throughout the country [4]. 

To improvement these plants, it is necessary to carry out a mechanical integrity study of the 

pressure vessels that will keep working to produce ULSD. Among the vessels to be studied, the two 

heat exchangers handling the reactor effluent, which are exposed to the highest fluid temperatures, are 

the most susceptible to corrosion damage. This is due to the severe conditions that these heat 

exchangers are exposed during their service operation (approximately 350°C, a high sulfur content of 

about 60 kg/cm
2
 of gauge pressure). For monitoring the equipment damage, an ultrasonic test may be 

performed to determine the wall thickness.  

According to the Nernst equation [5], corrosion is an electrochemical process that occurs 

spontaneously, that means that this process takes place in a thermodynamically most stable state of 

energy. For this reason, it is not possible to avoid the corrosion process; one can only reduce & control 

the degradation rate using corrosion inhibitors, cathodic protection or a physical barrier to prevent 

electron flow from the anode to the cathode [6]. Examples of such organic coatings, claddings or 

linings. 

However, the heat exchangers under consideration cannot be internally coated or cladded. For 

this reason, it is important to measure the actual wall thickness at different elapsed times to determine 

the corrosion rate. The corrosion rate is important for estimating the remaining life of a heat exchanger 

and establishing an adequate maintenance program. Furthermore, more accurate estimation of the 

remaining life of a heat exchanger can reduce human fatalities, environmental damage and 

unscheduled oil refinery shutdowns. 

The main problem that motivates this research was that no one else has paid any attention 

before to the application of Short-Term and Long-Term Corrosion Rate (STCR & LTCR) in the 

remaining useful life estimation of pressure vessels. Sometimes the result of using STCR or LTCR can 

have a great impact in the decision to replace more vessels unnecessarily, questioning to renovation or 

not a refinery plant because it could provoke an unuseful investment. To produce ULSD, Pemex 

needed to have an approximation of the cost of improvement the existing the middle-distillate plants, 

to approximate more accurately it was necessary to know which corrosion rate can be applied, 

encouraging the purpose of this work.  

On the other hand, corrosion data are frequently published with the purpose to provide enough 

information for the maintenance or design engineers. An example, it is the reference [7] that published 

data of the pipeline corrosion in soil. For this reason, this paper also provides information about 
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corrosion rate in heat exchangers in hydrotreating units for designers and people that works repairing 

this kind of vessels. 

 

2. APPLICATION IN THE ULSD PROJECT IN MEXICO 

In almost all of the developed countries of the world, the specifications for the upper limits of 

sulfur content in diesel are approximately 15 ppm [2]. Reducing sulfur has benefits such as reduced 

SOx emissions to the atmosphere, acid rain reduction and promotion of energy-efficient diesel vehicle 

use. Particularly for Mexico, which has registered a gasoline deficit in recent years [8], diesel could be 

an option to change the fuel model applied in the country, where gasoline is the predominant fuel in 

automobiles. In this context, the Mexican government has decided to place restrictions on sulfur 

content for diesel [3]. Additionally, PEMEX has launched a clean fuel project for producing ULSD. 

Improvement existing facilities for desulphurization of middle distillates has been shown to be 

economically and technically feasible by A Stanislaus and coworkers in 2010 [2]. Accordingly, 

PEMEX decided to improvement 17 hydrotreating plants across the country. Improvement plants 

requires a mechanical integrity analysis of the pressure vessels to determine which vessels will be 

modified by the change of the process technology and which vessels will be replaced or repaired 

because of limited remaining life. 

In all of the existing diesel facilities operated by PEMEX, the vessels that suffer the fastest 

deterioration by corrosion are the heat exchangers that preheat the stream that feed the reactor using 

the effluent stream from the same reactor. The working temperature and pressure in the hottest heat 

exchangers are approximately 350°C and 5883 KPa (60 kg/cm
2
) gauge, respectively. Within the shell 

and tube heat exchangers, the effluent flows through the tubes while the feed (primary diesel) flows 

through the shell, which is usually manufactured from low alloyed steel.  

 

 

 

3. CORROSION RATE ESTIMATION 

Usually the two most popular threats to the heat exchanger integrity are both the corrosion-

erosion [9] and the pitting corrosion attack [10]. The hydrotreating reactors are used to remove the 

undesirable sulfur and nitrogen that come from the sour naphta, sour diesel or other intermediate 

distillates. The heat exchangers in the hydrotreating units that are responsible of decreasing the 

temperature of the stream that flows out from reactors cool down the byproducts, including ammonia 

(NH3) and hydrogen sulfide (H2S). The product of these two gases forms a salt, ammonium bisulfide 

(NH4HS) [11,12], that provokes a kind of degradation named Ammonium Bisulfide Corrosion or 

Alkaline Sour Water Corrosion [13]. The Alkaline Sour Water Corrosion is influenced mainly by the 

fluid velocity, temperature and H2S partial pressure. In 2006, a study lead by Horvath et al. [14] 

indicates that in the last 25 years there have been several major incidents where NH4HS corrosion 

caused loss of containment in hydroprocessing units that resulted in damage/lost production on the 

order of 50 million dollars. This fact makes an important point in the study of this kind of corrosion.  
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Pemex has already developed some criteria for assessing the integrity of a heat exchanger [15]. 

First, it is necessary to determine how many observations are required to estimate the remaining life of 

a heat exchanger. The experiment in this research consists mainly in making a sampling inspection 

plan for reliable estimates of the remaining life of the vessel because to measure the wall thickness 

across the entire vessel, it is necessary to entirely remove the external coating.  

The wall thickness measurement was determined using conventional ultrasonic thickness 

gages, similar to the described by Bray [16] and according to the ASME Section V, Articles 4,5 and 23 

[17]. 

In the heat exchangers that preheat the feed to the reactor, between 30 and 40 observations 

were carried out. To determine the corrosion rate (metal loss rate), the wall thickness was first 

measured at designated locations at different times. The API-510 standard method [18] (“Pressure 

Vessel Inspection Code: In-Service Inspection, Rating, Repair and Alteration”) named these locations 

as condition monitoring locations (CLMs). The corrosion rate (metal loss rate) can be determined by 

the difference in thickness measurements at two different times divided by the time interval between 

readings. The API-510 standard also establishes that either the long-term corrosion rate (LTCR) or the 

short-term corrosion rate (STCR) must be chosen according to the inspector’s experience [18].  

 

The LTCR can be computed by Equation (1): 

 

LTCR =    (1) 

 

where ti is the initial thickness measurement at a CML,. 

 ta is the current thickness at the same CML measured at the most recent inspection, and  

 is the time between thickness measurements. 

 

The STCR can be computed by Equation (2): 

 

STCR =    (2) 

 

where tp is the thickness measured at a previous measurement, and . is the time between the 

previous measurement and the current one. 

 

After computing both the LTCR and the STCR, typically the inspector then predicts the 

remaining life of the vessel; however, the following question may emerge. When or under which 

condition is it more appropriate to apply: LTCR or STCR? A wrong decision could result in 

unnecessary repair or, even worse, a possible rupture. This research aims to help provide more 

information for answering this question. 
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4. DATA ANALYSIS 

To study the corrosion rate behavior, two heat exchangers seriously affected by temperature in 

an oil refinery in the South of Mexico were selected. The wall thicknesses measurements were 

collected using ultrasonic tests; however, for data analysis, the wall thicknesses were converted to 

metal loss by subtracting the wall thickness at a particular time from the initial wall thickness. For each 

heat exchanger, more than 30 metal loss observations were conducted, and then a fitting of the metal 

loss histogram with a theoretical distribution model was also carried out in this research.  
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Figure 1. Metal loss histogram for Heat Exchanger “A” in 2001 and its corresponding fitting curve. 

 

The theoretical distribution selected is the generalized extreme value distribution (GEVD) as its 

application to the corrosion analysis is well established [19-22]. Equation (3) represents the probability 

density function (PDF) for a GEVD. 

 

   (3) 

 

where  is the location parameter,  is the scale parameter and  is the shape parameter. 

To assess that this distribution was selected correctly, the Kolmogorov-Smirnov (K-S) and chi-

square tests were applied. The metal loss histogram was fitted for each inspection performed at three 

different times.  Figure 1 shows the histogram for metal loss in millimeters and its corresponding 

fitting data. 
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In addition to fitting the metal loss histogram, it was also useful to fit the metal loss rate 

histogram. Fitting the metal loss rate (corrosion rate) histogram is not only beneficial for plant 

maintenance personnel, corrosion engineers and safety engineers but also for plant operation 

personnel, process engineers and project engineers. This is because it is possible to plan shutdowns, 

make better estimations of equipment life in the design stage and to plan more accurately project 

execution.  

The same procedure, i.e., the use of GEVD fitting and K-S and chi-square tests, was used for 

the LTCR. Figure 2 illustrates the LTCR histogram for Heat Exchanger “A” and its corresponding 

fitting data.  
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Figure 2. Long-term metal loss rate for Heat Exchanger “C” and its corresponding fitting curve. 

 

Table 1. Fitting to the GEVD of the metal loss histograms at two periods. 

 

Heat 

Exchanger 

Year GEVD 

PARAMETER 

p-value 

(Kolmogorv-

Smirnov test) 

p-value 

 (Chi squared 

test)    

A 
2001 1.55 0.78 0.04 0.95 0.96 

2006 2.22 1.33 -0.06 0.42 0.36 

B 
2001 0.86 0.59 -0.05 0.86 0.37 

2006 1.97 1.32 -0.10 0.96 0.97 

C 
2001 1.68 1.52 -0.03 0.98 0.86 

2008 3.11 1.81 -0.25 0.79 0.15 

D 
2001 2.10 1.41 0.04 0.94 0.86 

 2008 2.19 1.37 0.05 0.96 0.76 
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Table 2. Fitting to GEVD of the LTCR and STCR histograms. 

 

Heat 

Exchanger 

Corrosion 

Rate 

GEVD 

PARAMETER 

p-value 

(Kolmogorv.Smir

nov test) 

p-value 

 (Chi squared) 

   

A 
LTCR 0.46 0.27 -0.06 0.86 0.91 

STCR 0.23 0.12 -0.08 0.82 0.93 

B 
LTCR 0.27 0.19 0.46 0.33 0.62 

STCR 0.33 0.24 -0.16 0.98 0.74 

C 
LTCR 0.17 0.06 0.19 0.33 0.89 

STCR 0.06 0.04 0.44 0.83 0.60 

D 
LTCR 0.16 0.07 0.28 0.82 0.77 

STCR 0.07 0.06 0.45 0.71 0.69 

 

Figure 3 schematizes the STCR distribution. The GEV distribution was also selected to fit the 

observations. Tables 1 and 2 show the results obtained in the fitting of metal loss histograms at 

different times and LTCR and STCR histograms.  
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Figure 3. Short-term metal loss rate for Heat Exchanger “C” and its corresponding fitting curve 

 

Figure 4 represents the metal loss histogram evolutions for Heat Exchanger “A”. Evolution of 

the mean and the variance can also be observed, the values for which can be computed from the 

parameters shown in Table 1. 
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Figure 4. Evolution of the metal loss in Heat Exchanger “A”. 

 

 

 

5. RESULTS OF THE FUTURE METAL LOSS ESTIMATION 

Once the corrosion rate and the metal loss PDFs are determined, it is feasible to estimate a 

future metal loss PDF. To do this, it is necessary to convolve the metal loss PDF and the corrosion rate 

PDF. Equation 4 represents the convolution of these PDFs. This convolution was already applied in 

corrosion problems; References [23] and [25] that represent some of the applications, assuming that 

the metal loss and corrosion rates are random variables.  

 

   (4) 

 

where  is the corrosion rate PDF,  is the metal loss PDF in time t1,  is the 

metal loss PDF estimated for time t2 and  is the difference between t2 and t1. 

To demonstrate the application of Equation 4, the metal loss PDF fitted for measurements for 

Heat Exchangers A, B, C and D (see Table 1) were used to predict a future metal loss PDF. This 

prediction was carried out by applying the LTCR PDF and the STCR PDF in Equation (4) to estimate 

the future metal loss distribution. Figure 5 illustrates this application for Heat Exchanger “A” using the 

STCR PDF with the parameters shown in Table 2 from 2006. It may be observed that the estimated 

PDF and the observed histogram are quite similar. The p-value for the K-S test was 0.45 indicating 

excellent applicability for estimation of future observations. 
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Because the API 510 standard establishes two possible options for estimating the corrosion rate 

in a vessel (Equations 1 and 2), Equation 4 was used to estimate the future PDF for metal loss using 

both STCR and LTCR information and for different time periods (see Table 2). Table 3 shows both the 

non-parametric mean and non-parametric standard deviation for the observed metal losses in 2010 and 

2012 for the heat exchangers studied. Additionally, Table 4 summarizes the results obtained including 

the estimated GEVD parameters for different time periods and different metal loss PDFs at time t1 for 

both types of corrosion rates. All of this information was obtained from Tables 1 and 2. In the last 

column of Table 4, it is possible to observe the p-value that results from the K-S test when one 

compare the observed heat exchanger metal loss and the theoretical probability distribution. 
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Figure 5. Metal loss histogram for Heat Exchanger “A” in 2010 and the GEVD curve estimated from 

convolution of the STCR probability density function and observations in 2006. 

 

Table 3. Observed metal loss non-parametric means and non-parametric standard deviations for the 

heat exchangers. 

 

Heat Exchanger Year of the last 

measurements 

Metal loss non-

parametric mean 

(mm) 

Metal loss non-

parametric standard 

deviation (mm) 

A 2010 4.29 2.00 

B 2010 3.79 2.10 

C 2012 4.07 2.59 

D 2012 4.22 2.01 
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Table 4. GEVD parameters and p-value resulting from Equation 4. 

 

Heat 

Exchanger 

Year for 

t1 

Year for 

t2 

GEVD Parameters for 

predicted PDF in t2 
Corrosion 

Rate 

p-value 

For K-S 

test µ (mm) σ (mm) ξ 

A 

2006 

2010 

3.34 1.42 0.0029 STCR 0.45 

2001 4.07 1.83 0.0036 LTCR < 0.01 

2001 3.94 1.44 -0.0031 STCR 0.02 

2006 5.23 2.57 0.0101 LTCR < 0.01 

B 

2006 

2010 

3.72 1.70 0.0124 STCR 0.051 

2001 3.80 2.31 0.0027 LTCR 0.02 

2001 4.16 2.13 -0.0039 STCR < 0.01 

2006 3.54 1.85 -0.0021 LTCR 0.12 

C 

2008 

2012 

3.59 1.80 -0.1582 STCR 0.06 

2001 3.91 1.76 -0.0073 LTCR < 0.01 

2001 3.98 1.79 -0.2044 STCR <0.01 

2008 2.81 1.81 0.0053 LTCR 0.65 

D 

2008 

2012 

3.14 1.75 -0.0058 STCR 0.52 

2001 4.37 1.81 0.0198 LTCR < 0.01 

2001 3.69 2.03 0.0056 STCR < 0.01 

2008 3.06 1.44 0.0020 LTCR 0.25 

 

According to the literature [24] regarding the p-value, the general rule is that 0.05 is used as the 

level where reasonable doubt begins. Something happening with probability less than or equal to 0.05 

is thus viewed as being exceptional. In other words, if a p-value of less than or equal to 0.05 is 

calculated, there is a greater probability of errors when that option is chosen. In this research, the 

results obtained from the convolution are compared with the most recent metal loss histograms: 2010 

measurements for Heat Exchangers A and B and 2012 measurements for Heat Exchangers C and D. 

According to the information shown in Table 3, to convolve the STCR PDF and the PDF resulting 

from the fitting of the last observations provided the best results, obtaining p-values higher than 0.5 in 

all cases. This can be explained by the fact that in general, the LTCR has much larger variance. F. 

Caleyo et al. showed that the variance of the corrosion rate tends to increase in time [25]; in this sense, 

it is feasible to affirm that the use of the STCR PDF could provide more confidence in the estimation 

of metal loss by corrosion in the future. 

 

This result suggests that in case of having enough Short-Term Corrosion Rate data, it is more 

convenient to use them than the Long-Term Corrosion Rate data. For instance, in the ULSD project in 

Mexico, this result contributed to decide the suitability of improvement the hydrotreating units, 

avoiding making unnecessary repairs, alterations and vessels replacement. Valor et al. [26] also 

indicated that the use of Long-Term Corrosion data can provoke an underestimation of the remaining 

life in oil and gas pipelines. These authors explained this situation because of LTCR takes into 

consideration the rapid corrosion rate that occurs at the beginning of any corrosion process. So, 
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including LTCR in the remaining life estimation of any structure could carry over in a lack of 

accuracy. The use of LTCR can be justified only by the fact of not having enough STCR data. 

 

6. CONCLUSIONS 

The main conclusions in this research are as follows. 

 

 In heat exchangers, the metal loss observed can be fitted to a GEVD model with a high 

level of confidence (See Table 1). This can help to predict the future evolution of the metal loss in the 

vessels, as shown in the literature [23,25,26]. It is expected that these data can be fit to a GEVD 

because the CLM points are located at sites most susceptible to metal loss. 

 Both the STCRs and LTCRs observed in heat exchangers can also be fit to a GEVD 

with high level of confidence as is shown in Table 2 and Figure 2. Also, it is important to mention that 

the mean and variance tend to increase with respect to the time, as has been reported in other types of 

corrosion phenomena (i.e. localized corrosion in References [25-26]). 

 The results of the convolution of the fittings of the metal loss and the metal loss rate can 

also be fitted to a GEVD. 

 After convolving and fitting the data and distributions for the four heat exchangers 

studied, it was shown that the STCR provides superior estimation to LTCR for future metal loss. Use 

of STCR rather than LTCR may then provide benefits of increasing reliability of remaining life 

estimates for heat exchangers in hydrotreating units, avoiding unnecessary repairs, reducing sudden 

shutdowns and reducing the probability of failure. The details of this result is shown in Table 3, it can 

be observed that in all the results obtained the use of STCR method can lead in a better estimation of 

the wall thickness, in which p-value is higher in almost all cases. 
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