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The hydrogen economy has gained increasing attention from government bodies and major oil 

companies. There are proven examples of this technology being implemented in a society like Iceland, 

where electrolytic hydrogen generation powered by renewable energy has been developed to support 

the demand of the transportation sector. Hydrogen generation via electrolysis consists of the hydrogen 

and oxygen evolution reactions. Conventional electrode materials used for the electrolysis belong to 

the platinum group metals that are expensive. In this work, Raney cobalt as an alternative which is 

inexpensive, electrodeposited from a Watts bath is reported. In addition, modifying the Watts bath 

composition and combining two types of Raney have also been investigated and reported. We have 

identified overpotentials of -349 mV for the best Raney cobalt sample and -270 mV when Raney 

nickel is combined with Raney cobalt for hydrogen evolution in alkaline medium at 100 mA cm
-2

. 

Another objective of this work is resolving the difficulties found in interpreting the electrochemical 

impedance data for Raney type materials. The nickel binder competes with Raney cobalt during the 

reaction, these interactions exhibit different impedances. The electrodeposited electrodes have been 

tested for energy efficiency with overpotential curves and electrochemical impedance measurements. 

Additional tests including X-ray diffraction and field emission scanning electron microscopy equipped 

with energy dispersive analysis have also been undertaken that support the results of the catalyst 

surfaces under study. 

 

 

Keywords: modified Watts Bath, Raney cobalt, hydrogen evolution. 

 

 

1. INTRODUCTION 

Recently, hydrogen has received increased attention from major oil companies like Exxon 

Mobil [1], Shell [2, 3] and BP [4]. Hydrogen is a source of energy to support society. These oil 

companies, in their energy outlook reports, point out a more diversified future for energy supply mix in 
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which hydrogen participates to a large extent. The energy outlooks for 2030 made by Exxon Mobil and 

BP indicate emerging alternative sources of energy; for example BP comments that ‘the fastest 

growing fuels are renewables (including biofuels)’. The Shell energy outlook speculates hydrogen fuel 

cell vehicles (FCVs) will compete with electric vehicles in 2050, implying that the hydrogen 

technology could dominate the market of transportation. Iceland, which has important sources of geo-

thermal energy, generates hydrogen electrolytically, this process being powered by renewable energy. 

The Shell Company has supported the development of this technology in Iceland. Most of its generated 

hydrogen supplies the demand of the transportation sector. This is an important example that asserts 

successful application of this technology in a society. 

Electrolytic hydrogen generation is energy intensive and expensive. Conventional materials for 

water electrolysis belong to the platinum group metals that are expensive. In this respect, our current 

work focuses on developing alternative electrode materials to substitute those of which are 

conventionally used now. Cobalt and nickel are alternative materials as they are less expensive and 

electrochemically active toward the hydrogen evolution reaction (HER) [5]. There are two approaches 

in improving the electrochemical activity of materials, these are known as the ‘geometric’ and 

‘electronic’ factors [6]. Cobalt and nickel in the form of powder alloys with aluminum or zinc are 

called Raney after activation. Raney cobalt or nickel, has a high geometric factor as its surface area per 

unit of mass is substantially higher than the pure material itself.  Raney cobalt and nickel were initially 

developed for organic reactions as catalysts [7-10]. The synthesis of Raney Co and Ni for electrode 

applications differs from that used for organic reactions [7-12]. The most common synthesis for Raney 

Co and Ni is by electrodeposition, where the powder alloy is deposited on the surface of an electrode 

along with Ni from the plating bath (i.e. acting as the binder), then it is activated. 

Watts bath is the most common plating solution used for the purpose of depositing powder 

alloys [13]. In our current work, we have employed and reported a “modified version” of the Watts 

bath [14]. The Raney Co electrodes electrodeposited by the modified Watts bath are evaluated to 

determine their energy efficiency (refer to “Joule’s effect”) toward the HER in alkaline medium. In 

addition, the electrochemical impedance spectroscopic (EIS) technique gives useful information about 

how the energy is being consumed (i.e. size of the electric resistance) and EIS data is interpreted with 

linear voltammetry. The challenging issue is EIS data fitting, particularly when the binder competes 

with the catalyst (i.e. Raney cobalt or nickel). The electrochemical impedance analysis and the 

improved overpotential for the electrodeposited Raney Co and Raney Co/Ni mix are reported here. 

Further to this, the influence of the catalyst surface roughness and its effect in energy efficiency is also 

detailed in this work.  

It is reported by Hitz [15] that Raney Ni/Al and Ni/Zn electrodes exhibited overpotentials 

ranging from -268 to -521 mV at a current density 100 mA cm
-2

  at 25 
o
C in 1 M NaOH. In the case of 

a nickel plate an increase in overpotential to -530 mV is reported [16]. Further improvement in the 

overpotential has also been reported [13, 17] well below -100 mV, however, this has been achieved 

only at a higher temperature of 90 
o
C. It is generally accepted that a decrease in ~ 20 mV of 

overpotential is reasonable, for every 10 
o
C of increase in temperature in the alkaline solution. The 

overpotentials identified from our work on Raney Co which presented here are competitive to those 

published earlier [5] for this specific type of material. 
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To the best of our knowledge, no work has been reported on the use of Raney Cobalt in 

modified Watts bath for the hydrogen evolution reaction. A brief theory of the hydrogen evolution 

reaction, which commonly takes place in alkaline media during electrolysis, is given in the next section 

for the benefit of readers rather than solely referring to the literature. 

 

 

 

2. THEORY 

Electrolytic hydrogen evolution in alkaline media has three well-known mechanism steps, 

described by Eqs. 1-3 and its corresponding HER schematic diagram is shown in Fig. 1 (Tafel step not 

shown). 

 

M + H2O + e
  
  M – H + OH

   
      (1) 

 

      H + H2O + e
  
 
 
  H2 + OH

  
  + M                     (2) 
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Sample surface 

Active site of the sample 

denoted as ‘M’ 

 
 

Figure 1. HER Schematic diagram on the Catalyst surface 

 

In these Equations, ‘ ’ denotes the active site on the catalyst, and they show atomic hydrogen 

as the only reaction intermediate. Hydrogen can only evolve in Eqs. 2 and 3, either as a combination or 

through one of these two steps. When a particular step is rate determining (rds), discrete Tafel slope 

values (b) are found. A Tafel slope of 120, 40 and 30 mV dec
-1 

represents Eqs. 1, 2 and 3 as the rds, 

respectively. To reconcile other slope values, modifications to the mechanism or the introduction of 

different isotherms are required [6, 18-20].  

In addition to a Tafel slope analysis, electrochemical impedance spectroscopy shows 

characteristics of the hydrogen evolution reaction (HER). EIS technique give us a wide range of 

information, for example, there has been relevant studies about the pore shape by EIS [15, 21].  Tafel 

slopes has been reconciled in terms of pore shape in some cases [22]. EIS equivalent circuit models for 
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hydrogen evolution on Raney type surfaces have been mathematically explained in detail by Lasia [22-

24]. The most common models used for the HER on porous surfaces such as Raney Co in alkaline 

medium, are shown in Fig. 2 [15, 23, 25-30].  

 

1CPE 2CPE

CPE

R1 RctRct

Rs Rs

Rp

CPE

CPE1

Cp

 
Figure 2. Equivalent circuit models for the HER on porous surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 3CPE equivalent circuit used for the HER in the presence of an inductive loop [24], and  

modified 2CPE to account for the impedance of an oxide layer. 

 

The 2CPE model is the preferred one for data fitting by Lasia [15]. The reason for the 2CPE 

model being preferred for EIS fitting of porous surfaces, lies on the physical meaning of CPE1 and R1. 

They represent characteristics of the surface geometry of the porous electrode, although its specific 

meaning is not always clear [15]. The 1CPE model has been used for the case of Raney Co [27], 

however, it is less frequently used for EIS data fitting of porous surfaces. It should be noted that the 

1CPE and 2CPE models are equivalent.  

There is a third model that we have called 3CPE which is shown in Fig. 3. This model also has 

mathematical support and it can occur for reactions of one adsorbed specie [24]. A circuit is inductive 

when its phase (Z) is positive, this means that the voltage leads the current. This is the reason why the 

3CPE model has an inductor (L). One example of inductive impedance is shown in the next section 
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(Sec. 4, Results and Discussion), Fig. 5 (top left), where it is shown that at low frequencies, the phase 

(Y) is negative, this means a positive phase (Z).  A distinction should be made between the 1CPE and 

3CPE models. The main difference between these two models is related to the magnitude of the 

equilibrium constants of the Eqs. 1-3. When the magnitude of the forward and reverse equilibrium 

constants of the first step (e.g. Volmer as rds) are bigger than those from the second step (e.g. 

Heyrovsky), one would expect the absence of inductive behavior on impedance plots. Vice versa, for 

instance, if Heyrovsky is the rds then a decrease in the Tafel slope should accompany the presence of 

an inductive loop.    

The electrical elements of these equivalent circuits have a discrete meaning. In all models, CPE 

is a constant phase element related to the double layer capacitance (Cdl) and Rct is the charge transfer 

resistance.  CPE and Rct are related to chemical processes on the surface of the electrode. Cp and Rp are 

closely dependent on the kinetics of the HER reaction, specifically to the values of the rate constants of 

Eqs. 1- 3. The CPE1   R1 combination is related to the porosity of the electrode and found to be 

independent of the kinetics of the faradaic process [30]. The CPEf   Rf combination represents the 

impedance of an oxide layer. Finally, Rs is the solution resistance. 

The double layer capacitance is used to determine the degree of porosity of the Raney 

materials. In this respect, it has been taken an estimated Cdl of 20 µF cm
-2

 for a smooth metallic 

electrode to determine a ratio between this theoretical value and the experimentally determined Cdl for 

porous electrodes to obtain a roughness factor rf  [28]. The obtained roughness factor (rf), illustrating 

the porosity, for these materials are tabulated in Table 3. The below Eq. 4 determines the average 

double layer capacitance of porous surfaces for one adsorbed specie reactions.  

 

 (1) 

 

The parameter T is related to the double layer capacitance and (T = Cdl when = 1) [15]. The 

variable  is associated to an angle of depression (1-) of the capacitive loop to account for non-

idealities. Deviations from the ideal capacitance are expected as the substrate is heterogeneous; there 

could be lateral effects or partial transfer of charge between adsorbed molecules and the substrate [6]. 

Common values of are found ranging from 0.75 to 0.97 on porous surfaces for the HER [15].  

 

 

 

3. MATERIALS AND METHODS 

3.1. Electrode preparation 

The plating station consists of copper and nickel plates, acting as working and counter 

electrodes, respectively, a power supply, hot plate with magnetic stirrer and the plating solution. One 

face of the copper electrode is insulated with ferro-laquer, before electrodeposition, it is cleaned with 

the following procedure. It is polished with fine emery paper, degreased with acetone, alkaline 

electrocleaned with 1.5 M NaOH solution for 1 minute at 30 mA cm
-2

 at ambient temperature. Then it 

is acid pickled with HCl 10% for 5 seconds. After cleaning, the copper panel is plated with nickel 
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binder at a current density of i = 30 mA cm
-2

 for 20 minutes, and the composition of the Watts bath is 

shown in Tables 1 and 2. Raney cobalt precursor was acquired from Sigma-Aldrich in the form of 

cobalt-aluminum alloy powder, with a Co to Al ratio as 79:21 by mass. The Raney nickel particles 

were acquired from Merck having a composition by mass of Ni-Al 50:50. Cobalt and nickel particles 

are 150 micron max in size. As a safety measure, both Raney types were acquired inactive as they are 

pyrophoric. After deposition the coating was activated in 6.25 M NaOH solution at 70 
o
C for 1h. 

 

Table 1. Plating characteristics of the Raney Co electrode 

 

Solution ID 
Tempera

ture (
o
C) 

Time 

(min) 

Reagents 

(Analytical 

grade) 

Concentration 

g l
-1

 

Watts Ni 55 20 

NiSO4·6H2O 300 

NiCl2·6H2O 45 

H3BO3 30 

Watts Ni 

1/2/3 
55 20 

NiSO4·6H2O 350 

NaCl 148/100/40 

H3BO3 30 

All solutions were vigorously stirred by a magnetic stirrer. 
 

Table 2. Description of the cobalt and nickel particles coating application 

 

Sample ID 

Preparation 

Raney Co or Ni 

concentration (g l
-1

) 

Solution ID 

Ni plate Acquired 

Raney Co 1 6.25 

Watts Ni Raney Co 2 12.5 

Raney Co 3 25.0 

Raney Co 4 

25.0 

Watts Ni 3 

Raney Co 5 Watts Ni 2 

Raney Co 6 Watts Ni 1 

Raney Co/Ni 7 6.25* 

Watts Ni Raney Co/Ni 8 12.5* 

Raney Co/Ni 9 25.0* 

*Raney Co to Raney Ni added into the Watts bath in a ratio of 50:50 by mass.  

 

3.2. Linear Voltammetry 

A three electrode set up consisting of the Raney Co or Co/Ni electrode (10 x 20 x 1 mm), 

platinized platinum plate (50 x 50 x 1 mm) and Argental sat’d KCl as the working, counter and 

reference electrodes, respectively. These electrodes were coupled to a BioLogic VSP potentiostat to 

register the data. The reference electrode was placed in the vicinity of the working electrode (~2 mm) 

with a Luggin capillary and the IRdrop compensation was done by the current interruption method. The 
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alkaline medium was 2 M KOH at 25 
o
C. The current density range was set from 1 to 100 mA cm

-2
 

and the scan rate was 0.1 mV s
-1

.  

 

3.3. Electrochemical impedance spectroscopy 

This test was done in sequence after linear voltammetry under the same set up. EIS is done 

with a stabilization time between working potentials of 3 min, potential amplitude of 5 mV and a 

frequency range of 20 kHz to 0.05 Hz. A fit for purpose Argental sat’d KCl reference electrode (RE) 

was used (a typical assembly of the RE is shown in [31]).  

 

3.4. Surface tests 

The morphology of the deposits was examined by field emission scanning electron microscopy 

(FE-SEM) equipped with energy dispersive analysis (EDS) for qualitative elemental analysis using a 

JEOL JSM-7000F FE-SEM/EDS instrument. The crystal structure and chemical composition of the 

deposits were analyzed by a Siemens X-ray diffractometer (XRD) with Philips Co-Kα radiation 

(1.7902 Å). 

 

 

 

4. RESULTS AND DISCUSSION 

4.1. Tafel plots 

The electrochemical and kinetic parameters of the samples examined in 2 M KOH for 

hydrogen evolution is given in Figure 4 and Table 3.  

 

Table 3. Experimental kinetic parameters of the samples for the HER in 2 M KOH (per apparent area) 

 

Raney Co 

or Co/Ni 

sample ID 

-b (mV dec
-1

) 

-100 (mV) 
Rct* at 10 

( cm
2
) rf * at 10low high 

1 98 171 378 -- -- 

2 100 128 349 -- -- 

3 98 98 352 -- -- 

4 112 146 359 -- -- 

5 101 160 386 -- -- 

6 112 143 354 -- -- 

7 128 179 313 1.821 630 

8 126 191 270 1.539 1648 

9 117 162 271 3.695 412 

*: Rounded up values based on their standard deviations. 

 

Three samples of Raney Co and three samples of Raney Co/Ni have been compared in Fig. 4, 

along with the nickel plate. Among the six Raney Co samples that have been electrodeposited (see 
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Tables 1-3 for details), only three (Co 4, 5 and 6) are shown in Fig. 4 and the rest (Co 1, 2 and 3) are 

shown only in Table 3. Samples labeled (a) to (c) contain only cobalt particles and nickel binder. 

Relatively high overpotentials have been observed for the samples (a) to (c) and this has made difficult 

to fit impedance data, as the nickel binder (from Watts bath; see Table 1 for details) competes with the 

Raney Co particles for the HER. For this reason, fitted impedance parameters have not been processed 

for samples a   c.  
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Figure 4.Experimental HER Tafel plot for selected samples in 2 M KOH at a sweep rate of 0.1 mV s

-1
. 
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Figure 5. Nyquist and Bode admittance diagrams of the samples 1 and 6 for the HER in 2 M KOH 

solution. Continuous lines represent the fitted curve by the 3CPE model for the sample 1 and 

modified 2CPE model for the sample 6, experimental data as symbols.   
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However, selected impedance spectra have been shown for these samples (in the next section 

4.2) to illustrate differences between fitted curves and experimental points. The best samples in terms 

of overpotential are those which contain Raney Ni particles in the mix, these being samples (d) to (f). 

These mixed samples are substantially better than those with only Raney Co. This shows that Raney 

nickel is more active than Raney cobalt for the HER in alkaline solution. Considering Tafel slopes, 

samples containing only Co particles (i.e. samples a   c) show smaller slopes at low overpotentials than 

those with Ni particles. This could be explained as follows.  

A slope of 120 mV dec
-1

 can only be explained considering Volmer (i.e. Eq. 1) as the rds. 

Whereas, slopes of smaller magnitudes indicate Heyrovsky (i.e. Eq. 2) competing with Volmer. This is 

supported by EIS where the Raney Co 1 sample shows an inductive loop in the Nyquist diagram as 

shown in Fig. 5. Inductive loops are an indication that Heyrovsky is competing with Volmer as the rds, 

this was described in the theory section where the 3CPE circuit was outlined.  

The next variable of interest is the oxygen content. Oxygen content does not affect the 

overpotential for the HER on Raney Co coatings, and this is different from those results found for 

Raney Ni [31]. The reason for this result is the high Rct values found for Raney Co, which is supported 

by its relatively high overpotentials for the HER. Hitz [15] reported Rct values which are in agreement 

to those observed here in this work. Nickel binder with high oxygen content has shown electrical 

resistances (Rf ) as large as 0.5  cm
2
 [31]. This oxide resistance is significantly smaller than the Rct 

value (14.6  cm
2
) shown for the Raney Co 6 sample at 150 mV shown in Fig. 5. Most of the 

overpotentials found in the samples 1 to 6 are dominantly controlled by their Rct, this explains why, 

despite of samples containing high oxygen content, their overpotentials cannot be explained in terms of 

the additional impedance from the oxide loop.  

 

4.2. Electrochemical impedance spectroscopy plots 

Based on the facts explained in the previous section 4.1, we have focused our studies only on 

the samples (d – f in Fig. 4) for EIS data processing. This set of samples show lower overpotentials 

when compared to the other samples which contain only cobalt (a – c in Fig. 4). The nickel binder does 

not compete with the Raney Co/Ni mix catalyst which makes a better fitting for the EIS data. 

However, we show selected impedances for samples Co 1 and Co 6 to describe the conflicts found 

when performing EIS data fitting. Figures 5 to 8 show the Nyquist impedance and Bode admittance of 

selected Raney samples. Figure 5 compares the impedances of the Raney Co 1 and Co 6 samples. The 

impedance spectra for sample 1 show inductive loops, in addition to having a lower Tafel slope. The 

sample 1 was prepared with the smallest concentration of Co particles (i.e. 6.25 g l
-1

) and it is the only 

sample which shows inductive loops. The formation of inductive loop suggests that the nickel as the 

binder is competing with Raney Co. Figure 5 also includes the impedance spectra of the sample Co 6, 

and it does not show any inductive behavior (absence of negative phase (Y)), while it shows an 

additional capacitive loop in a frequency region where oxides could manifest. This oxide loop appears 

as a shoulder in the Bode admittance diagram (in Fig. 5) at a log of the frequency between 2 and 3. 



Int. J. Electrochem. Sci., Vol. 10, 2015 

  

9388 

This sample shows the highest amount of oxide by EDS analysis which quantified as high as 7.83%, 

among all the Raney samples studied, tabulated in Table 5.  

 

Table 4. 2CPE modeled data of the Raney Co/Ni 8 sample for alkaline HER with a solution resistance 

of Rs = 0.2 . 

 

 

(mV) 

CPEdl 

(F s

cm

-2
) 

*10
-2

 

dl 
Rct* 

(cm
2
) 

CPE1 

(F s

cm

-2
) 

*10
-2

 

 1 
R1* 

(cm
2
) 

60 2.33 

1 

1.778 5.07 0.62 7.644 

100 1.59 1.519 6.02 0.60 2.861 

155 1.40 1.257 5.17 0.62 1.786 

* additional significant figures due to smaller standard deviations. 

 

Table 5. Oxygen elemental dispersive analysis of the Raney Co and Co/Ni electrodes 

 
Concentration 

by mass (%) 

Raney Co or Co/Ni sample ID 

1 2 3 4 5 6 7 8 9 

Oxygen 1.70 5.23 3.98 0.89 2.16 7.83 2.14 2.34 1.13 
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Figure 6. Experimental Bode admittance diagram of the samples 3 and 8 for the HER in 2 M KOH 

solution.  
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Figure 7. Nyquist and Bode admittance diagrams of the samples 7 and 8 for the HER in 2 M KOH 

solution. Continuous lines represent the fitted curve by the 2CPE model for both samples, 

experimental data as symbols.   

 

The modified 2CPE model (i.e. an additional capacitive loop added to this model) failed to fit 

the experimental data of the sample 6 as most of the experimental points do not intersect the fitted 

curve. In Raney Co samples when the nickel binder competes for the HER, these samples do not yield 

a good EIS data fitting as the Ni binder and the Co catalyst have different impedances for the HER, 

and hence the 2CPE model may not be suitable. 

The difficulty in fitting EIS data for the samples containing only Raney cobalt is that the nickel 

binder competes with the cobalt catalyst and this is again demonstrated in Fig. 6. The data in Figure 6 

shows that at the frequency region where the charge transfer impedance manifests, no constant slope is 

observed for sample 3, whereas for sample 8 it shows a constant slope for all the cycles shown. This 

indicates that there is one dominant type of interaction between one of the Raney types (i.e. nickel or 

cobalt) and the HER for the sample 8. This is not the case for the sample 3, which is believed that the 

HER occurs on a combination of the nickel binder and Raney Cobalt as a function of overpotential. 

This combination of the HER occurs on different materials as a function of overpotential could explain 

why it is difficult to fit EIS data for the samples 1 to 6.  
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Figure 8. Nyquist and Bode admittance diagrams of the sample 9 for the HER in 2 M KOH solution. 

Continuous lines represent the fitted curve by the 2CPE model, experimental data as symbols.          
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Figure 9. X-ray diffraction spectra of the Raney Co samples. 

 

Samples containing Ni particles in the mix (i.e. Raney Co/Ni samples 7 to 9) show better EIS 

data in terms of model fitting. The parameters used for the curve fitting for sample 8 are shown in 

Table 4. The EIS fits improve at higher overpotentials where Ni particles become the dominant 

location for the HER. At low overpotential (η = -35 mV), for sample 7, two regions corresponding to 

kinetic and mass transfer have been indicated [32] in Fig. 7 while for high overpotential (η = -150 mV) 

the kinetic loop becomes dominant. Fig. 7 shows that the higher the overpotential, the better the fit for 

sample 8. However, the EIS data from samples 7 to 9 is difficult to fit at low overpotentials, one 

example is shown in Fig. 8 (i.e. Bode admitance at  = -30 mV). There is a region where a slight 

discrepancy is observed in the fit (i.e. missing a few of the experimental points). As discussed earlier, 

when two materials compete for the reaction then the model may not be appropriate. The CPE model 

series have been developed for one type of reaction intermediate, M – H as shown in the mechanism 
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steps in Fig. 1. In the region of interest, being around 10 (cf. Fig.  ) the fits improve substantially as 

shown in Figs. 7    . This supports the reasoning that Raney Ni is more active than Raney Co and the 

nickel binder.  

 

4.3. X-ray diffraction (XRD) spectra 

To identify the nature of oxygen species associated with the metal present in the Raney 

samples, XRD characterization has been carried out. The XRD spectra of the Raney Co and Co/Ni 

samples are shown in Figures 9 and 10 respectively. The important feature to note is the intensity 

observed for the patterns corresponding to Raney Co and Co/Ni samples studied. They differ 

substantially in their counts (see y-axis of the figures) for the samples labeled between 1 and 3; 4 and 

9. Therefore they have been placed into separate figures for a peak resolution. Nevertheless, all the 

samples show the characteristic Ni peaks (from Ni binder in the case of samples between 1 and 6) and 

these have been indicated in the figures. The peaks corresponding to Cu comes from the copper 

substrate in addition to the synthetic nickel peaks.  
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Figure 10. X-ray diffraction spectra of the Raney Co/Ni samples. 

 

There is no evidence of other elemental peaks including metal oxide present in Raney samples 

through XRD diffraction pattern. Interestingly, peaks corresponding to cobalt were not identified by 

XRD; it should be noted that if the cobalt peaks are present, then these would have been overlapped 

with the Ni peaks, as they lie close to each other. After a careful analysis, no peaks relating NiO or 

CoO have been identified but EIS suggest that the presence of oxygen in the samples could be in the 

form of nickel oxide. Previous studies [31] has shown that XRD may not be a viable tool to identify 
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low concentration of oxides while XPS may aid the presence of oxygen O(1s) in the form of nickel 

oxide and hydroxide from Watts plating solutions. As XRD is not feasible, alternatively, we have used 

FE-SEM associated with EDS to analyze the oxygen content in the samples. 

 

4.4. Field emission scanning electron microscope (FE-SEM) analysis 

Figure 11 shows the porous micrograph of the Raney Co/Ni sample 8, which is the most energy 

efficient for the HER among all the samples investigated (cf. Table 3). The observed morphology is the 

common pattern seen for all the sample surfaces studied. The observed porous-type morphology 

supports the use of EIS fitting constructed for porous surfaces. Table 5 shows the elemental dispersive 

analysis (EDS) for oxygen content associated with FE-SEM. High concentrations of NaCl (from Watts 

bath) are detrimental for the deposition of the binder as it increases the oxygen content of the coating 

while increasing the electrical resistance. The modification in the Watts bath, by substituting 

NiCl2·6H2O for NaCl, is a satisfactory option as it decreases the oxygen content in the coating when 

the concentration of NaCl is in the range of 40 g l
-1

. This is supported with results found from the 

sample 4 which shows the smallest percentage of oxygen.    

 

 
 

Figure 11. FE-SEM micrograph of the Raney Co/Ni 8 sample. 

 

The origin of oxygen species in the Raney catalyst can be explained from the Pourbaix diagram 

[32]. It illustrates that the electrodeposition of nickel from a Watts bath has ~ 97% efficiency 

associated with undesirable side reactions such as oxide and hydroxide deposition could be expected. 

Similar to the Pourbaix illustration, in our previous work [31], we have observed NiO and Ni(OH)2 on 

the electrodeposited sample through XPS analysis. The mechanism of the formation of nickel oxide as 

a side reaction explained by Pourbaix is as follows: 

    (5) 
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In the Eq. 5, NiO can become hydrated NiO.H2O or form nickelous hydroxide Ni(OH)2. The 

free enthalpy of formation of NiO and Ni(OH)2 are -51,300 cal and -108,300 cal, respectively. A 

negative free enthalpy of formation represents that the reaction is spontaneous but it does not imply 

that it is kinetically dominant. This supports the conceptual of the presence of oxide in our 

electrodeposited Raney samples. 

The results obtained from our studies are competitive to those commonly reported for this type 

of material in the literature [13, 15, 17]. The best overpotential observed was for the sample 8 (-270 

mV) at 100 mA cm
-2

, which is within the range of 200-350 mV, where most Raney type catalyst is 

located. Raney nickel is a better catalyst for the HER than Raney cobalt, because in addition to high 

roughness factor, it is likely that nickel has a better electronic factor than cobalt. A better electronic 

factor is related to intermediate values of bond strength, between the active site and adsorbed 

hydrogen.    

 

 

 

4. CONCLUSIONS  

A porous Raney cobalt surface enhances the available area for the hydrogen evolution reaction 

to occur. The presence of porosity increases the efficiency of an electrodeposited material in 

comparison to cobalt having non-porous (i.e. smooth) surface. Raney Co showed a reasonable 

overpotential of -349 mV for the HER. However, when Raney Ni is added into the Raney Co coating, 

this improves the overpotential of the electrode substantially, exhibiting -270 mV. For all the Raney 

Co samples, the nickel binder competes with the catalyst, and it becomes difficult to analyze the 

electrochemical impedance data. Whereas, the electrochemical impedance spectroscopy fitting is found 

to be improved for the Raney Co/Ni mix material working at high overpotentials, where the best fitting 

is observed with the experimental data set. In the case of Raney Co/Ni mix, the binder does not 

participate for the HER (as evidenced through EIS) because the Raney Ni is a better catalyst than 

Raney Co and the Ni binder. FE-SEM/EDS, EIS and our previous work validate the presence of an 

oxide in the form of NiO and Ni(OH)2 likely from the nickel binder. 
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