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To describe charge transfer in a four-electrode electrochemical cell for the Iodide-Iodine redox system, 

the Nernst-Plank equations and the boundary conditions based on the kinetics of the reactions on the 

electrodes have been modified, assuming the small active component ( 

3I ) concentration relative to the 

background electrolyte concentration (components I and metal ions Me ). The resulting 

mathematical model comprises the convective diffusion equation and the Laplace type equation for the 

potential, while the boundary conditions on the electrodes bond the potential and the concentration of 


3I . The approach was applied for the classical one-dimensional model in case of small hydrodynamic 

velocity. For realistic parameters of the system, the modelling results are different from the solution of 

the convective diffusion equation with the fixed concentration on the electrodes and are in good 

agreement with the experimental data. 
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1. INTRODUCTION 

A four-electrode electrochemical cell immersed in the liquid electrolyte is used as signal 

converting element to build liquid based inertial motion sensors [1][2][3]. The operating principles are 

based on the fact that the inertial force produced by the sensor housing motion generates electrolyte 

flow near the electrodes. In turn, the hydrodynamic flow influences the electrolyte components 

transport and, consequently, the inter-electrode electrical current. The variation of the electrical current 

is the sensor output. This type of sensors is known as electrochemical or MET (molecular electronic 
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transfer) sensor. Electrochemical sensors are used in seismology, seismic exploration, perimeter 

security systems, structural monitoring etc [1], [3], [4], [5], [6], [7], [8]. 

Such sensors most frequently contain concentrated water based iodide solution with small 

amounts of molecular iodine in the form of tri-iodide ions. Due to high concentration and high 

dissociation of iodide, the solution conductivity is usually high, which results in negligibly weak 

electrical field in the solution. This fact allows to use a convective diffusion equation to determine tri-

ioide ions concentration as the most common and convenient approach to model charge transfer in the 

signal converting cell. The obvious advantage of convective diffusion equation is the simplicity of 

mathematical formulation which makes it possible to find analytical solution of the charge transfer 

problem in many cases [9], [10]. For numerical methods, the use of the convective diffusion equation 

[11], [12] significantly lowers the computation resources requirements . However, there are certain 

technical difficulties and fundamental limitations of such approach. As discussed in [13], [14], it is 

almost impossible to formulate boundary conditions on anodes correctly, even in case of saturation 

current. Another limitation of the convection diffusion approach is that it is unable to describe natural 

convection adequately since there is only one type of ions under consideration in the convective 

diffusion approximation. All presented ions yet make approximately the same contribution into the 

density variations that are the fundamental reason of natural convection. That is why, much more 

complicated numerical methods based on Nernst-Plank equations with the Buttler-Volmer type 

boundary conditions have been widely used in recent years [15]–[17], [2], [18]. 

The aim of this paper is to combine convective diffusion equation with a more accurate 

formulation of boundary conditions. The theoretical model starts from the Nernst-Plank equations and 

the boundary conditions which take into account electrochemical kinetics of the reaction on the 

electrodes of signal converting cell. Assuming small active component ( 

3I ) concentration relative to 

background electrolyte concentration (components I and metal ions Me ), both equations and the 

boundary conditions were significantly simplified. The resulting mathematical model includes 

convective diffusion equation and the Laplace type equation for electrochemical potential. It is much 

simpler than the original one and could be solved analytically for many configurations. At the same 

time, unlike the original convective diffusion equation, this model takes into account the mutual 

influence of the potential and tri-iodide concentration on the electrodes of signal converting cell. 

The proposed model was applied for the classical [19] one-dimensional signal converting 

system. Unlike the original Larkam’s model, the concentration of tri-iodide ions on anodes was not 

constant. Different frequency behavior for both anodic and cathodic currents were thus found. The 

comparison of the theoretical modelling results with the experimental data taken from [14] showed 

good correlation between them. 

 

 

 

2. THEORY 

Consider an electrochemical cell filled with KI + 2I water-based electrolyte. KI  is present in 

much higher concentration than 2I . In aqueous solution, potassium iodide dissolves into positive 
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K and negative I ions. Iodine 2I  is present in the form of tri-iodide ions 


3I . The electrodes are 

made from platinum or platinum alloys. The modelling is aimed to find the inter-electrode currents 

variations as the result of liquid motion. In turn, the cell is used as a sensitive element of inertial 

sensor. The liquid motion is initiated by inertial forces produced by mechanical motion. 

Let’s start our consideration from the continuity equation: 

0 nn jdivtC  (1) 

nn jC ,  are the concentration and the flow density for the n-th kind of ions. 


 KIIn ,,3 . 

Flow densities could be presented as a sum of diffusive current density Dnj , , migration in electrical 

field mnj , and convection cnj , : 

ncn

nnnmn

nnDn

nmnDnn

CVj

qCzj

CDj

cjjjj









,

,

,

,, .


 (2) 

Herein   is the electrical potential, q is the positive charge, which is equal to the absolute 

value of electron charge, nD  is the diffusion coefficient of the n-th kind of ions, kT
Dn

n   denotes 

the mobility the n-th kind of ion, V denotes the local hydrodynamic velocity of the solution. 

For highly concentrated electrolyte, equations are usually complemented by the equations of 

hydrodynamics and by the condition of electroneutrality: 

0
3

  IIK
CCC  (3) 

In formulating the boundary conditions, first, take into account that at the electrode-electrolyte 

interface the charge transfer is associated with the following electrochemical reaction: 

eII 23 3  
 (4) 

The forward reaction in (4) takes place on anodes and the opposite one on cathodes. Therefore, 

the electrical current sej ,  is linked to 


3I and I  flows: 

sIsIse jqjqj
,,,

3

2
2

3
   (5) 

The total electrical current passing through the electrode could be found by integrating the 

electrical current density over the electrode surface: 

 
Sel

seel dSjnJ ,,  (6) 

n  is the outer normal to the electrode surface. The current elJ  is considered positive if it is 

directed from the electrolyte to the electrode. 

Besides, potassium ions do not participate in the charge transfer across the metal electrode-

electrolyte interface: 

0
,
 sK

j  (7) 

According to Vetter, the electrochemical reaction (4) has three subsequent stages: 
  eISurfI *
 (8) 
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SurfIII 22

**   

  32 III  

*I denotes the adsorbed molecular iodine, Surf denotes the free surface of the electrode. 

The first stage, associated with the charge transfer across the interface, is slower than the 

second and the third ones and therefore should be considered a rate limiting step. Introducing the 

equilibrium constants 22

*
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K   and 
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CC
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



 for the second and third stages, 

correspondingly, the following relation could be found: 

32

2 3
*

KKC

C
C

I
s

I
s

I
s





  (9) 

The interfacial electrical current density eli  is associated with the first stage of the mechanism 

(8) and is given by: 

  s

I

s

Iseel CkqCkqjni 


*,,  (10) 

s

I
C * is the concentration of the adsorbed iodine *I  and 

s

I
C  is the I concentration near the 

electrode surface, k and k denote the rate constants for the forward and reverse rate limiting 

reactions. 

Taking into account the Arrhenius equation and the dependence of the activation energy on the 

potential, the expression for the current density could be modified as follows: 


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




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
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
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)1(

00

00


 (11) 

E is the electrical potential drop across the double layer on the electrode surface,
 0k


and 0k


 

denote the rate constants for forward and reverse reactions in equilibrium, α is the electron transfer 

coefficient. Lower indices 0 mean concentrations of the components and the electrical potential drop in 

equilibrium. 

Equations (5), (7), (11) form a set of boundary conditions for the equations (1), (2) on the 

electrodes. On dielectric surfaces the boundary conditions are given by: 
0

,,, 3

  sIsIsK
jjj  (12) 

Solving the equations (1), (2) with boundary conditions (5), (7), (11), (12) is usually a difficult 

problem. Even in simple configurations, the analytical solutions are not known while numerical 

methods demand significant computer resources. Meanwhile the problem could be simplified if we use 

usual for the analyzed system condition of high background electrolyte concentration. 

For the cells practically used in inertial sensors, the concentration of 


3I  usually stays within 

the range from 0.01 mole/liter to 0.1 mole/liter, while the concentrations of I  and K  are ~4 

mole/liter. Consequently, the conditions   II
CC

3

,  
KI

CC
3

could be applied in equations (1), 

(2). As in papers [20], [21], we introduce a small parameter 
b

K

b

I

b

I

C
C

C

C

C

C 
 ~~~ 3



, where 
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bII
CCC    , bKK

CCC   . bC  denotes the 
K concentration in the electrolyte bulk in 

equilibrium.  

Considering 1 , we can state 
mKmImI

jjj
,,,

,
3

  . At the same time, all diffusion flow 

densities have the same order of value: 
DKDIDI

jjj
,,,

~~
3


 due to the relation (5) between the flows 

of ions 


3I  and I  as well as the electroneutrality condition. Also, K migration and diffusion current 

densities should compensate each other 
DKmK

jj
,,

~ 
. Finally: 

mKmIDKDIDI
jjjjj

,,,,,
~~~~

3


. 

So, keeping in (1), (2) only the main terms results in the following set of equations: 


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33

0

0
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 (13) 

The first equation in (13) is now the convective diffusion equation. In relation (11) using the 

1 we should assume 1
0,



S

I

S

I
CC  and combining with (9) results in the following: 










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In case of high rates of the electrochemical reaction the equation (14) could be transformed 

into: 

kT

qqE

s

I

s

I
e

C

C 0

3

3
2

0








 (15) 

Summing up the first and the second equations from (13), subtracting the third equation and 

applying the electroneutrality condition, the following was found: 

0  (16) 
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  (17) 

Note that   )(
,,, 3 sIsIsKe jjjqj , with 

kT

DDCq
KIb )(2

 
 . 

Finally, we come to the following set of equations: 
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

















0
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III

I
CVCD

t

C

 (18) 

Further, substituting clearly expression for the potential difference between electrolyte and 

electrodes into (15), using the expression for   (17) and taking into account the smallness of 

concentration variations relative to bC , the following expression was found: 

kT

q

s

I

sel

SeC

)(2

3


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

 
(19) 

kT

q

s

I
eCS

0

3

2

0




 is the normalization coefficient, which could be determined if total number of 



3I  ions in the solution is known. 

In comparison to the usual approach based on the convective diffusion equation with the 

constant concentration on the electrodes, the mathematical formulation (18) and (19) takes into 

account the dependence of the electrochemical reactions rates and consequently the concentration 
3I

C  

on the electrical potential in the electrolyte. 

Here a simple one-dimensional model for a signal converting cell will be considered, as it is 

schematically shown in Figure 1. In this model, the infinite planes penetrable for liquid present the 

electrodes. The cell is ideally symmetrical. Outer electrodes (anodes, according to Figure 1) are 

maintained at the constant positive potential a . The potential of inner electrodes (cathodes) equals 0. 

The coordinates of the anodes are ad  and the coordinates of the cathodes are cd . 

 
Figure 1. The electrochemical signal converting cell model. cd  and ad  denote the coordinates of 

the cathodes and the anodes, correspondingly. 
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In the absence of mechanical signal, the liquid is stationary and 0V . The voltage applied 

between the electrodes is fixed and the variables 
3I

C  and  in (18) do not depend on time. Further, 

this case will be referred to as a static one. Oppositely, the case of time-dependable liquid motion will 

be referred to as a dynamic case. Let’s consider static and dynamic cases consequently. 

 

2.1. Static case. 

The first equation in (18) turns into stationary diffusion equation: 02)0(2

3

  xC
I

. Hereafter 

the upper index (0) will refer to the variables values at zero-velocity static case. 

Considering a situation of 1kTq a  the solution which satisfies boundary conditions can 

be expressed as: 
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aC  is the concentration of 


3I  distant from the electrodes. This solution is well known from the 

literature [13, 19]. So modification of the equations and the boundary condition presented by (18) and 

(19) does not effect on the resulting concentration distribution. 

 

2.2. Dynamic case. 

The situation could be different in the dynamic case. Take into consideration that practical 

electrochemical sensors operate at very small hydrodynamic velocities. So, we are looking for the 

solution of equations (18) proportional to the hydrodynamic velocity in the first power: 

)1()0(

)1()0(

333



  III
CCC

 (21) 

Here, 
1)1()1(

~,
3

VC
I

 . Substituting into (19) and taking into consideration that at small 

velocities 1)1(  kTq  gives: 

kTqCC
S

SISI

)1(

,
3

)0(

,
3

)1(

2    (22) 

Suppose that velocity is changed by the harmonic law )exp(0 tiVV  . Substituting 

)exp(),exp( 1
)1(

1,
3

)1(

titiСC
SI   into the equation (18) gives: 
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The boundary conditions on the electrodes are equations (22), continuity of the concentration 
)1(

3
I

C  and the potential )1( and the equation 
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x

C
qD   , which presents the equality 

of the electrical current to the flow of 


3I multiplied by q2  as it follows from the equation (5). 

Solving the equation (23) allows to find a spatial distribution of non-equilibrium concentration 
)1(

3
I

C  and the potential )1(  and, finally, to determine the anodic and cathodic currents. In the 

following section, this procedure will be done for the cell with realistic geometrical parameters.  

 

 

 

3. RESULTS AND DISCUSSION 

 Solution of the equations (23) gives the following: 
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Here 
)(

;
2

1 0

3
ca

a

I
ddi

CV
Q

D

i







 


 . HGFCBA ,,,,, are the coefficients determined from 

the boundary conditions: 
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Here:  
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The frequency dependence of the electrode currents is presented by the following equations: 
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Here the signs in front of the right part in equations (27) are “+” and “-“ for the electrodes 

located at coordinates aс dd  , and aс dd , , correspondingly. Note that (24), (25) and (27) agree 

with the results of one-dimensional convective diffusion equation solution, known as the Larkam 

model [19] at 0w . w generally enters the solution in a combination of either сdw or adw , so 

although ~w , these combinations cannot be considered small values in case of high frequencies 

when  1сd . 

There are two limiting cases when equations (27) could be simplified. 

1) The first is low-frequency approximation: 1~ ca dd  . Under this limit, (27) 

can be expressed as follows: 
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 (28) 

It could be seen from (26) that 1~ w . So if caca dddd ~~ , as it takes place in 

most practical cells: 

SCqVII aca 0  (29) 

 This result is exactly the same as it was found in already quoted classical Larkam model.  

2) Another limit is 1)(~~  сaca dddd  . In this case, 

1)exp()exp(  ca dd   and (27) is transformed into: 

ca

I
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a

c
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I
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dd

iD
SCqVI

dw
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12

21
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3

3

0

0








 (30) 

The second equation in (30) agrees with the Larkam result obtained in standard convective 

diffusion approximation with constant electrode concentration assumption. For the anodic current the 

situation is different. First, there are two critical frequencies 2

,

,
)(

3

ca

I

ca
wd

D 

 . At the frequencies 

lower than ca,  the anodic current is the same as the cathodic one, while at higher frequencies it is 

lower (at very high frequencies 
a

c

c

a

d
d

I
I

  it has the opposite phase). Such behavior agrees with 

the experimental data presented in [13]. 

To compare the obtained results with the experimental data, the data in [14] was used.  The 

experimental data presented there was obtained for the electrochemical cell made of platinum gauze 

electrodes separated by perforated dielectric spacers. In the experimental sample the thickness of the 

gauze electrode was 80 microns, while the thickness of the dielectric spacers was 130 microns. The 

correspondence of the parameters from the equations and the real experimental cell geometry obtained 

in this work is shown in Figure 2. Suppose that for a better correspondence between the real and the 

model geometries of the transformative system, infinitely thin planes corresponding to the electrodes 

in the theoretical model must be placed into the geometrical center of the experimental gauze 

electrodes. In that case 
410*05.1 cd m, 

410*15.3 cd m. Other data is taken the same as in 

[14]. Therefore, the following data is used in calculations: 04.0aC mol/L, 4bC mol/L, 

910*2
3


I

D  m
2
/sec, 

910*4.2   KI
DD m

2
/sec. 
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Figure 2. The correspondence between the experimental cell configuration tested in [14] and the 

parameters used in calculations. Namely, the planes presenting the electrodes in the model are 

placed in the center of real gauze electrodes. Here 1 are the anodes, 2 are the cathodes and 3 are 

the dielectric spacers. 

 

Figure 3 shows the distribution of non-dimensional concentration 

)(0

)1(

33

caa

II

norm ddVC

DC
C






  when hydrodynamic velocity achieves its maximum value. The 

horizontal axis presents a non-dimensional coordinates 
cd

x . The Figure presents only the 

concentrations for positive values of х. For negative coordinates, the dependencies will be asymmetric, 

which is clear from (24). The results calculated by (24) and (25) are presented by the red curves. The 

upper graph corresponds the frequency of 0.01 Hz, the middle graph corresponds 1 Hz and the lowest 

one corresponds 10 Hz frequency. For comparison, each graph has a blue curve showing the 

concentration distribution at w=0, i.e. within the classical Larkam model. The influence of potential 

change is seen most clearly at the anodic concentration change. In its turn, the anodic concentration 

influences the value of the anodic current, which is seen on the graph by the change in gradient near 

the anode. The influence on the cathodic current (i.e. on the concentration gradient near the cathode) is 

considerably less and can be observed only at low frequencies (the upper and the middle graphs in 

Figure 3). 
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Figure 3. The distribution of a non-dimensional concentration when hydrodynamic velocity achieves 

its maximum value.  

Legend:  

Red curves  – calculated according to (24) and (25), 

Blue curves – solution with infinitely high conductivity w=0, 

Black lines show positions of the electrodes 

 

For electrical currents calculated after the equations from (27), the comparison with the 

experimental data from [14] has been done, where broad-band dependence of the cathodic current on 

the anodic one has been measured  from 0.01 Hz to 160 Hz. The result is presented in Figure 5. 

Squares show the experimental data, while the smooth curve is the calculation result. The results can 

be seen in quality correspondence between each other. The difference is considerable at high 

frequencies, which is the expected result, since the difference in small-scale configuration of electrodes 

is the most important specifically at high frequencies [14], [22]. The same micro-scale geometry 

peculiarities seem to define monotonicity of the experimental dependence behavior at the highest 

frequencies, while the theoretical curve peaks at the frequency near 200 Hz. 
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Figure 4. Ratio of the cathodic currents difference to the anodic currents difference. The red dots 

present the experimental data from [14]
 1

, the blue curve presents the calculations from the 

equation (27). 

Legend: 

Red squares – experimental data from [14] 

Blue curve – calculation  according to (27). 

 

It is notable that although this method is quite simple, the presented difference from the 

experimental data is even less than with the use of more complicated approach based on the system of 

Nernst-Planck equation solution (which admits only numeric solutions of the method) used in [14].  

 

4. CONCLUSIONS 

The present work suggests a new approach to the theoretical model assembly for electrical 

currents in four-electrode electrochemical cell used as a sensitive element for motion parameters 

                                                 
1
 Reprinted with minimal adaptation from Journal of Electroanalytical Chemistry, Vol. 661, Zhanyu 

Sun,V. Agafonov,E. Egorov, «The influence of the boundary condition on anodes for solution of convection–

diffusion equation with the application to a four-electrode electrochemical cell», Pages 157-161, Figure 3, 

Copyright (2011), with permission from Elsevier. 
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sensors. The essence of the suggested approach is to use the equation of convective diffusion for 


3I active ions transfer together with the Laplace equation for electrical potential distribution (18). 

The basis for such approach is the condition standard for the studied system when the concentration of 

electrochemically active component in the solution is considerably less than the concentration of the 

base electrolyte. Herewith, as in the case of only the convective diffusion equation, 


3I ions migration 

in electrical field may be not taken into account. At the same time, the change of the potential 

depending on the values of electrode currents and their spatial distribution is seen in the change of 

speed of reactions at the electrodes. The developed approach was tested at the example of one-

dimension geometry of electrode system, similar to the classical Larkam model. The obtained results 

of the ratio of the anodic to the cathodic currents are in particularly good agreement with the 

experimental data. 

The developed approach can be essentially used for more complex geometrical configurations 

of electrodes and is considerably more simple and less computer-demanding than the solution of the 

system of Nernst-Planck equations. 
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