Irreversible One-Electron Reduction of Dioxygen in Ionic Liquid Containing Olefinic Substituents

Md. Mominul Islam¹, Shimpei Kojima², Begum Nadira ferdousi³ Ferdousi³ and Takeo Ohsaka^{4,*}

¹Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh ² Bio-medical Engineering Laboratories, Teijin Pharma Ltd, 4-3-2, Asahigaoka, Hino, Tokyo 191-8512, Japan

³ Department of Arts and Sciences, Ahsanullah University of Sciences and Technology, 141-142 Love Road, Tejgaon Industrial Area ,Dhaka 1208, Bangladesh

⁴ Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

*E-mail: <u>ohsaka@echem.titech.ac.jp</u>

Received: 13 October 2015 / Accepted: 30 October 2015 / Published: 1 December 2015

We observed for the first time an irreversible one-electron oxygen (O₂) reduction reaction (ORR) in an ionic olefinic substituents. 1,3-diallylimidazolium liquid (IL)containing bis(trifluoromethansulfonyl)imide ([DiAlI⁺][N(Tf)₂⁻]). Cyclic voltammograms measured for the ORR at glassy carbon, gold and platinum electrodes in the potential range of $0 \rightarrow -1.3 \rightarrow 0$ V in $[DiAll^+][N(Tf)_2^-]$ were observed with an irreversible cathodic peak at -0.95 V vs. Ag wire, while a quasi-reversible redox response for the O_2 /superoxide ion ($O_2^{\bullet-}$) couple at a formal potential of -0.87 V was obtained in an analogous IL, $[BMI^+][N(Tf)_2^-]$ ($[BMI^+]$: 1-butyl-3-methylimidazolium). The plot of current density (*j*) of the cathodic peak vs. square root of potential scan rate in $[DiAll^+][N(Tf)_2^-]$ was found to be a straight line passing through the origin, suggesting that the ORR in $[DiAll^+][N(Tf)_2^-]$ is diffusion-controlled. By examining the effect of water on the ORR, its irreversibility was justified not to result from the protonic impurity in $[DiAlI^+][N(Tf)_2^-]$. The number of electrons involved in the ORR was confirmed to be one by comparing the experimental chronoamperometric current-time (j-t) curve with that derived theoretically. The saturated concentration and diffusion coefficient of O₂ were simultaneously determined to be 1.6 mM and 1.3×10^{-4} cm² s⁻¹, respectively, via a computer simulation of the *j*-*t* curve. The one-electron reduction product of O_2 (i.e., $O_2^{\bullet-}$ species) was proposed to undergo a follow-up reaction with the allyl group of [DiAlI⁺] to form an "intermediate". Using a double-potential step chronoamperometric technique, the rate constant of this reaction was estimated to be $0.1 \text{ M}^{-1} \text{ s}^{-1}$.

Keywords: Irreversible oxygen reduction; Ionic liquids; Reaction of superoxide ion with olefin; Cyclic voltametry; Double-potential step chronoamperometry

1. INTRODUCTION

Dioxygen (O_2) reduction reaction (ORR), which has a great importance in many practical applications including industrial, environmental, fuel cells and biological purposes, has been extensively studied in different media (e.g., aqueous, non-aqueous and aprotic solutions and ionic liquids (ILs) (Scheme 1)) [1-20].

Bis(trifluoromethan sulfonyl)imide $[N(Tf)_2]$

1-Butyl-3-methylimidazolium [BMI+]

1,3-Diallylimidazolium [DiAll⁺]

Scheme 1. Structures of cations and anion of ILs used in this study.

In aprotic solutions, the first step of ORR is a redox reaction of the $O_2/O_2^{\bullet-}$ (superoxide ion) couple (Eq. (1)), while the second step is an irreversible, one-electron reduction of $O_2^{\bullet-}$ to form peroxide species (Eq. (2)) [1-3,15,18]. So far, similar mechanism has been reported to prevail in various ILs [7-18], except for ion-paring phenomenon [18], two-electron ORR in phosphonium cationbased ILs [13,14] and two-electron ORR only at mercury electrode in imidazolium cation-based ILs (ImILs) [7]. AlNashef et al. have first observed the cyclic voltammetric redox peaks of the $O_2/O_2^{\bullet-}$ couple at platinum (Pt), gold (Au) and glassy carbon (GC) electrodes in ImILs [9,10]. Recently, ILs have been employed as the alternative of to volatile organic solvents (e.g., dimethylsulfoxide and acetonitrile) for in situ synthesis of $O_2^{\bullet-}$ used in different applications [10,14,15,21-25].

$O_2 + e^- \rightleftharpoons O_2^-$	(1)
$O_2^{\bullet-} + e^- \rightarrow O_2^{2-}$	(2)
$2 O_2^{\bullet-} + H_2 O \rightarrow O_2 + HO_2^- + OH^-$	(3)

Several research groups have studied the ORR in different ILs to determine the solubility and diffusibility of O_2 and the stability of $O_2^{\bullet-}$ in such highly viscous and ionic media [8,11-17]. The stability of $O_2^{\bullet-}$ species practically depends on the type and the degree of purity of media, since the $O_2^{\bullet-}$ species undergoes various chemical reactions (e.g., Eq. (3)) [1,2,4,10,14,15,18,19,21-30]. In fact, the $O_2^{\bullet-}$ species is not "super" as an oxidant [1,2] but offers numerous reactions, e.g., a one-electron transfer, de-protonation, nucleophilic substitution, disproportionation (Eq. (3)) etc. The de-protonation reaction of the O₂[•] species that leads to an irreversible two- or four-electron ORR in aqueous solution is familiar [5,6,20,26,30]. Also, by the addition of a protonic additive (e.g., H₂O and alcohol) in aprotic solutions including ILs [4,7,8,20,26-30], the reversible, one-electron ORR becomes an irreversible, two-electron reaction. Besides, the $O_2^{\bullet-}$ species is generally inert towards simple olefins, but it can react with the activated olefins, e.g., the $Q_2^{\bullet-}$ species is inert towards cyclohexene but can react with stvrene and perfluorooctene [22]. Clennan et al. [25] have synthesized stable а

adamantylideneadamantane-1,2-dioxetane by the reaction of the adamantylideneadamantane and the electrogenerated $O_2^{\bullet-}$ species in methylene chloride solution. We have recently previously reported that the $O_2^{\bullet-}$ species undergoes ion-pairing [18] in ILs and often can react with the acidic proton of imidazolium cation of ImILs [19]. At present, the quasi-reversible redox reaction of the $O_2/O_2^{\bullet-}$ couple that occurs especially in *N*,*N*-dialkylimidazolium cation-based ILs (i.e., ImILs) [7-12] is found for the first time to become irreversible in ImIL containing *N*,*N*-diallyl groups (Scheme 1).

In this study, the ORR was studied in 1,3-diallylimidazolium bis(trifluoromethansulfonyl)imide $([DiAII^+][N(Tf)_2^-])$ and 1-butyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide $([BMI^+][N(Tf)_2^-])$ (Scheme 1) at Pt, Au and GC electrodes using cyclic voltammetric and double-potential step chronoamperometric (DPSCA) techniques and the obtained results were compared. The effect of H₂O on the ORR in both ILs was also examined. The ORR in [DiAII⁺][N(Tf)₂⁻] was proposed to be a one-electron process in which the electrogenerated O₂^{•-} species was thought to undergo a follow-up chemical reaction with [DiAII⁺] cation to form an "intermediate" [24,25]. Using a DPSCA method [31,32], the rate constant of this reaction was also determined.

2. EXPERIMENTAL

2.1. Chemicals

 $[DiAlI^+][N(Tf)_2^-]$ and $[BMI^+][N(Tf)_2^-]$ (Scheme 1) were obtained from Kanto Chemical Co. Inc., Japan with a purity of more than 99% and contains less than 0.005 % H₂O and halides. All the ILs were used as received. The H₂O used was deionized H₂O purified with a Millipore Milli-Q system.

2.2. Apparatus and procedures

Cyclic voltammetric and potential step chronoamperometric measurements were carried out with a computer-controlled electrochemical system (Model: ALS/CHI 832A). The electrochemical cell was a conventional two-compartment Pyrex glass container with a working electrode (Au; $\phi = 1.6$ mm, Pt; $\phi = 1.6$ mm, GC; $\phi = 1.0$ mm), a spiral Pt-wire counter electrode and a silver (Ag) wire (quasi-)reference electrode. The working electrodes were carefully polished with alumina powder (down to 0.6 µm) with the help of a micro-cloth and then washed with Milli-Q water by sonication for 15 min. After that, the Au and Pt electrodes were electrochemically pretreated in Ar-saturated 0.05 M H₂SO₄ solution by repeating the potential scan in the range of -0.2 to 1.5 V until the voltammograms characteristic of the individual clean electrodes were obtained. Prior to use, the electrode was washed well with deionized water and dried by blowing air. Before measurements, N₂ or O₂ gas was flushed over the cell solution. All the measurements were carried out at room temperature (25 ± 2 °C).

The measured *j*-*t* curves were analyzed by considering the modified Cottrell equation [31,33]:

$$I = 4 n F r D_{O2} C_{O2} f(\tau)$$
(4)
when $\tau < 1.44$
 $f(\tau) = 0.88623 \tau^{-1/2} + 0.78540 + 0.094 \tau^{5/2}$ where $\tau = 4 D_{O2} t / r^2$ (5)

 D_{O2} and C_{O2} represent the diffusion coefficient and concentration of O₂, respectively, and *n*, *r* and *F* stand for the number of electron, electrode radius and Faraday constant, respectively. The data for the theoretical *j*-*t* curves (Fig. 5) were generated using Eqs. (4) and (5) where the *r* is the radius (0.05 cm) of the GC electrode used for the measurement of the *j*-*t* curves. The simultaneous determination of D_{O2} and C_{O2} was performed by a nonlinear curve fitting program available in Origin 6.1 (Microcal Software, Inc.).

3. RESULTS AND DISCUSSION

3.1. Redox reaction of the O_2/O_2^{\bullet} couple in $[BMI^+][N(Tf)_2^-]$

Figure 1. CVs obtained at GC electrode in O₂-saturated [BMI⁺][N(Tf)₂⁻] in the potential range of (a) 0 $\rightarrow -1.3 \rightarrow 0$ V and (b) $0.2 \rightarrow -1.9 \rightarrow 0.2$ V at υ of 0.1 V s⁻¹. Inset shows the plot of j_c (and j_a) vs. $\upsilon^{1/2}$, where the data were obtained from the CVs measured at various υ in the potential range of $0 \rightarrow -1.3 \rightarrow 0$ V (not shown).

Fig. 1 shows the typical CVs obtained at GC electrode in O₂-saturated $[BMI^+][N(Tf)_2^-]$. When the CV was measured in the potential range of $0 \rightarrow -1.3 \rightarrow 0$ V, a couple of well-defined cathodic and anodic peaks were observed at -0.95 and -0.8 V vs. Ag wire, respectively. In analogy with aprotic solutions [1-4] and other ILs [7-14,16-20], the cathodic and anodic peaks may be ascribed to a oneelectron reduction of O_2 to $O_2^{\bullet-}$ (Eq. (1)) and the reoxidation of $O_2^{\bullet-}$ to O_2 , respectively. The plots of current density (j) (anodic (j_a) and cathodic (j_c)) vs. the square root of potential scan rate ($v^{1/2}$) were found to be straight lines, indicating that the redox reaction of the $O_2/O_2^{\bullet-}$ couple is a diffusioncontrolled process [31]. Remarkably, at a given v, the value of j_c is significantly greater than j_a (i.e., j_c > j_a). In ILs, the diffusion coefficient of $O_2^{\bullet-}(D_{O2\bullet-})$ has been reported to be generally smaller by two orders of magnitude than that of O₂ (D_{O2}) [12-17,20]). Thus, the observed fact that $j_c > j_a$ may be rational [17]. When the CV was measured in the potential range of $0.2 \rightarrow -1.9 \rightarrow 0.2$ V, a new cathodic peak (-1.5 V) and anodic peak (-0.4 V) with a concurrent decrease in j_a at -0.8 V were obtained (Fig. 1(b)). The cathodic peak at -1.5 V may be regarded as a further one-electron reduction of $O_2^{\bullet-}$ to peroxide species (Eq. (2)) following by the ion-pairing phenomenon [18] and the anodic peak at -0.4 V for the re-oxidation of the formed peroxides species to O₂ [7,11,18]. Therefore, we observed a quasi-reversible behavior of the $O_2/O_2^{\bullet-}$ redox couple in $[BMI^+][N(Tf)_2^-]$.

3.2. Irreversible ORR in $[DiAlI^+][N(Tf)_2^-]$

Figure 2. CVs measured at GC electrode in (a) N₂- and (b and c) O₂-saturated $[DiAlI^+][N(Tf)_2^-]$ at υ of 0.1 V s⁻¹. Inset represents the CVs obtained at (a) Au and (b) Pt electrodes in O₂-saturated $[DiAlI^+][N(Tf)_2^-]$ at υ of 0.1 V s⁻¹.

Fig. 2 represents typical CVs measured at GC, Au and Pt electrodes (inset) in $[DiAlI^+][N(Tf)_2^-]$. In N₂-saturated solution, no peak was observed except for the background current

below ca. -2.4 V (Fig. 2(a)), indicating that the IL used is electrochemically stable within the measured potential range. On the contrary, during the cathodic potential scan in O₂-saturated [DiAlI⁺][N(Tf)₂⁻], well-defined cathodic peaks at -0.95 and -1.95 V (discussed later) with a small shoulder at -1.25 V (unknown) were observed (Fig. 2(b)).

Figure 3. (A) CVs obtained at GC electrode in O₂-saturated [DiAlI⁺][N(Tf)₂⁻] at potential scan rates of (a) 0.01, (b) 0.02, (c) 0.5, (d) 0.1, (e) 0.2, (f) 0.3, (g) 0.4, (h) 0.5 and (i) 0.8 V s⁻¹. (B) Plots of current density (j_p) vs. $v^{1/2}$ obtained for the cathodic peak at -0.95 V (a) and anodic peak at > - 0.4 V (b).

No anodic peak except for the small shoulders at -0.4 and 0 V was were observed during the anodic potential scan at a slow v, i.e., the ORR was irreversible regardless of the switching potential and the electrode used. When v was increased, the j_c at -0.95 V and the anodic shoulder at -0.4 V increased (inset in Fig. 3A). The plot of j_c vs. $v^{1/2}$ was found to be a straight line passing through the origin (Fig. 3B), being comparable with that observed in $[BMI^+][N(Tf)_2^-]$ (inset in Fig. 1). In fact, the ratio of j_c obtained in $[DiAII^+][N(Tf)_2^-]$ to that in $[BMI^+][N(Tf)_2^-]$ is almost unity (i.e., 1.2). Based on the above-mentioned results, the ORR in $[DiAII^+][N(Tf)_2^-]$ may be regarded as a diffusion-controlled, irreversible one-electron process.

3.3. Effect of H_2O on the ORR in ILs

The ILs supplied commercially often contain a trace amount of H₂O and instantaneously absorb moisture from the ambient environment, and consequently H₂O is known to result in an irreversible two-electron ORR (Eq. (3)) (described above). Osteryoung group has observed the irreversible redox responses of the $O_2/O_2^{\bullet-}$ couple due to the presence of protonic impurities (e.g., H₂O, H⁺) in imidazolium chloride-aluminum chloride molten salts [34]. Here, the effect of H₂O on the ORR was studied in both ILs used and the obtained results are shown in Fig. 4. When H₂O was added into $[BMI^+][N(Tf)_2^-]$, the shape of the obtained CV was found to deform (Fig. 4A): The midpoint potential shifted to more positive potential with a concurrent increase in j_c and a new anodic peak occurred at -0.5 V with a decrease of j_a (at a glance, the decrease in j_a at -0.75 V may not be recognized, but can be really seen by considering the baseline used for measuring the peak current). Note that unlikely the results in $[BF_4^-]$ -based ILs [8], the j_c did not increase largely, for example, twice that observed in the absence of H₂O. However, the observed increase and decrease in j_c and j_a , respectively, obviously result from an overall two-electron ORR via the reactions shown in Eqs. (1) and (3).

Figure 4. (A) CVs measured at GC electrode in O₂-saturated $[BMI^+][N(Tf)_2^-]$ in the absence (a) and presence (b) 2.0 M H₂O at υ of 0.02 V s⁻¹. (B) CVs obtained at GC electrode in O₂-saturated $[DiAII^+][N(Tf)_2^-]$ containing (a) 0, (b) 0.4 and (c) 1.0 M H₂O.

In contrast, in the presence of H₂O in [DiAlI⁺][N(Tf)₂⁻], almost no change in the peak potential took place and j_c decreased (Fig. 4B). In fact, the j_c decreased regularly with increasing the concentration of H₂O. These observations may be due to the smaller C_{O2} and/or D_{O2} in the presence of H₂O in [DiAlI⁺][N(Tf)₂⁻] compared to those in pure [DiAlI⁺][N(Tf)₂⁻]. Thus, the claim of the inherent H₂O in [DiAlI⁺][N(Tf)₂⁻] resulting in the irreversible CV response would be evidently negligible. Thus, the irreversibility in ORR in [DiAlI⁺][N(Tf)₂⁻] may result from the consumption of the O₂⁻⁻ species via a follow-up chemical reaction. As described in the Introduction Section, the O₂⁻⁻ species may favorably react with the allyl group of [DiAlI⁺] to form a "dioxetane intermediate" (Eq. (6)) as in the case of since the allyl groups of [DiAlI⁺] are attached to the imidazolium ring (i.e., the positive center) $O_2^{\bullet-} + IL \frac{k_{IL}}{O_2}$ (6)

3.3. DPSCA measurements and the mechanism of ORR in $[DiAlI^+][N(Tf)_2^-]$

To confirm further the number of electrons involved in such an irreversible ORR in $[\text{DiAlI}^+][\text{N}(\text{Tf})_2^-]$ and determine the values of C_{O2} , D_{O2} and k_{IL} (rate constant (Eq. (6)), the DPSCA measurements were carried out (Fig. 5). Since the stepping potential (-1.2 V) is chosen to be more negative than cathodic peak potential of ORR (Fig. 2(a)), the cathodic *j*-*t* curve (curve a in Fig. 5A) corresponds to the reduction of O₂ to form O₂^{•-} species that reacts with [DiAlI⁺] (Eq. (6)).

Figure 5. (A) Double-potential step *j*-*t* responses measured at GC electrode in (a,a') O₂- and (b, b') N₂saturated $[DiAlI^+][N(Tf)_2^-]$. The initial, stepping and final potentials were 0, -1.2 and 0 V, respectively. (B) The background-corrected *j*-*t* curve (solid line) obtained from panel (A) overlaid with those derived theoretically (symbols) according to the modified Cottrell equation [33]. The plots with circles and triangles represent one- and two-electron ORR, respectively. The data of the plots shown by filled and open symbols were calculated by considering C_{O2} of 6.7 and 10.0 mM, respectively, while the D_{O2} was assumed to be the same as 4.8×10^{-6} cm² s⁻¹. Inset in panel (B) shows the experimental (open circle) and fitted (dashed line) *j*-*t* curves.

801

Thus, the anodic *j*-*t* curve (curve a' in Fig. 5A) represents the re-oxidation of the un-reacted O_2^{\bullet} . Based on Eqs. (4) and (5) [33], the several theoretical *j*-*t* curves were derived and the obtained curves were overlaid with the experimental j-t curve (Fig. 5B). It can be clearly seen that the experimental *j*-*t* curve nearly fits with that derived theoretically for a one-electron ORR (curve shown by open circles), indicating that the ORR in $[DiAll^+][N(Tf)_2^-]$ is a one-electron process (Eq. (1)). Here, the obtained *j*-t curve was simulated for the determination of the actual C_{02} and D_{02} in $[\text{DiAll}^+][\text{N}(\text{Tf})_2^-]$ (inset in Fig. 5B) and the values of C_{02} and D_{02} were found to be 1.6 mM and 1.3 × 10^{-4} cm² s⁻¹, respectively. These values are different from those ($C_{O2} = 6.7$ mM and $D_{O2} = 4.8 \times 10^{-6}$ $\text{cm}^2 \text{ s}^{-1}$) reported in $[\text{BMI}^+][\text{N}(\text{Tf})_2^-]$, while the viscosities of $[\text{BMI}^+][\text{N}(\text{Tf})_2^-]$ (0.52 g cm⁻¹s⁻¹) and $[\text{DiAll}^+][\text{N}(\text{Tf})_2^-]$ (0.31 g cm⁻¹s⁻¹) are almost comparable [20]. The ratio of $(C_{O2} \times (D_{O2})^{1/2})$ obtained in $[DiAlI^+][N(Tf)_2^-]$ to that in $[BMI^+][N(Tf)_2^-]$ is about 1.2 that is comparable with the ratio of the values of i_c obtained in the CVs measurements in the same ILs (described above). This harmony worthily verifies that the ORR in $[DiAlI^+][N(Tf)_2^-]$ is a one-electron process and that the obtained values of C_{02} and D_{02} are reasonable [20]. By analyzing the obtained DPSCA responses by Schwarz and Shain's method [32], the values of the pseudo-first order rate constant and k_{IL} were estimated to be 0.42 s⁻¹ and 0.1 M⁻¹ s⁻¹, respectively. The obtained $k_{\rm II}$ is significantly larger than those of the reactions of $O_2^{\bullet-}$ species with styrene in acetonitrile solution (5.5 × 10⁻⁷ M⁻¹ s⁻¹ [22]) or with H₂O in DMSO solution $(2.8 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1} \text{ [23]})$. Although the product of the reaction expressed by Eq. (6) is not known, the second cathodic peak at -1.95 V (Fig. 2 (b)) may be ascribed to the reduction of the formed product. Moreover, the anodic peak at -0.4 V observed at faster υ (Inset in Fig. 3A) may be due to the re-oxidation of the unknown "initial product" formed by the reaction of the $O_2^{\bullet-}$ species and [DiAlI⁺] cation.

4. CONCLUSIONS

Cyclic voltammetric ORR measured at GC, Au and Pt electrodes in $[DiAII^+][N(Tf)_2^-]$ was found to be a diffusion-controlled, irreversible one-electron process, whereas a quasi-reversible redox reaction of the O₂/O₂^{•-} couple has been essentially found in $[BMI^+][N(Tf)_2^-]$ [8-12]. The observed irreversibility in the ORR was justified not to be associated with the protonic impurities in $[DiAII^+][N(Tf)_2^-]$. The number of electrons involved in the ORR was confirmed to be one by considering the CVs results obtained in both ILs as well as by comparing the experimental *j*-*t* curve with that derived theoretically based on the modified Cottrell equation [33]. The C_{O2} and D_{O2} were obtained to be 1.6 mM and 1.3×10^{-4} cm² s⁻¹, respectively. In the mechanism, the electrogenerated $O_2^{\bullet-}$ species was proposed to undergo a follow-up reaction with allyl group of [DiAII⁺] to form an "intermediate". With a DPSCA method, the rate constant of this reaction was estimated to be 0.1 M⁻¹ s⁻¹ that is much larger than that $(5.5 \times 10^{-7} \text{ M}^{-1} \text{ s}^{-1})$ reported for the reaction of the O₂^{•-} species with the olefinic group of styrene in acetonitrile solution [22]. A further study concerning the analysis of the product is in progress.

ACKNOWLEDGEMENTS

The present work was financially supported by a co-operative research program between Teijin Pharma Ltd. and Tokyo Tech. The grant titled Grant-in-Aid for Scientific Research on Scientific Research (A) (No. 19206079) to T. Ohsaka from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan is greatly acknowledged.

References

- 1. D.T. Sawyer and J.S. Valentine, Acc. Chem. Res., 14 (1981) 393.
- D.T. Sawyer, G. Chlerlcato, C.T. Angells, E.J. Nannl and T. Tsuchiya, *Anal. Chem.*, 54 (1982) 1720.
- 3. J.F. Wu, Y. Che, T. Okajima, F. Mastumoto, K. Tokuda and T. Ohsaka, *Anal. Chem.*, 71 (1999) 4056.
- 4. P.S. Singh and D.H. Evans, J. Phys. Chem. B, 110 (2006) 637.
- 5. M.S. El-Deab and T. Ohsaka, *Electrochem. Commun.*, 4 (2002) 288.
- 6. M.R. Miah and T. Ohsaka, *Electrochim. Acta*, 52 (2007) 6378.
- 7. M.M. Islam, B.N. Ferdousi, T. Okajima and T. Ohsaka, *Electrochem. Commun.*, 7 (2005) 789.
- 8. D. Zhang, T. Okajima, F. Mastumoto and T. Ohsaka, J. Electrochem. Soc., 151 (2004) D 31.
- I.M. AlNashef, M.L. Leonard, M.C. Kittle, M.A. Mattews and J.W. Weidner, *Electrochem. Solid-State Lett.*, 4 (2001) D 16.
- 10. I.M. AlNashef, M.L. Leonard, M.C. Kittle, M.A. Mattews and J.W. Weidner, *Indus. Eng. Chem. Res.*, 482 (2002) 4475.
- 11. Y. Katayama, H. Onodera, M. Yamagata and T. Miura, J. Electrochem. Soc., 151 (2004) A 59.
- 12. Y. Katayama, H. Onodera, M. Yamagata and T. Miura, J. Electrochem. Soc., 152 (2005) E 247.
- 13. R.G. Evans, O.V. Klymenko, S.A. Saddoughi, C. Hardacre and R.G. Compton, J. Phys. Chem. B, 108 (2004) 7878.
- 14. M.C. Buzzeo, O.V. Klymenko, J.D. Wadhawan, C. Hardacre, K.R. Seddon and R.G. Compton, *J. Phys. Chem. B*, 108 (2004) 3947.
- 15. J.D. Wadhawan, P.J. Welfold, E. Maisonhaute, V. Climent, N.S. Lawrence, H.B. Mcpeak, C.E.W. Hahn and R.G. Compton, *J. Phys. Chem. B*, 105 (2001) 10659.
- 16. U. Schoder, J.D. Wadhawan, R.G. Compton, F. Marken, P.A.Z. Suarez, C.S. Consorti, R.F.D. Souza and J. Dupont, *New J. Chem.*, 24 (2000) 1009.
- 17. J. Ghilan, C. Lagrost and P. Hapiot, Anal. Chem., 79 (2007) 7383.
- 18. M. M. Islam and T. Ohsaka, J. Phys. Chem. C, 112 (2008) 1269.
- 19. M.M. Islam, T. Imase, T. Okajima, M. Takahashi, Y. Niikura, N. Kawashima, Y. Nakamura and T. Ohsaka, *J. Phys. Chem. A*, 113 (2009) 912.
- 20. A. Khan, X. Lu, L. Aldous and C. Zhao, J. Phys. Chem. C, 117 (2013) 18334–18342.
- 21. M. J. Gibian and S. Russo, J. Org. Chem., 49 (1984) 4304.
- 22. M.Y. Meskina, L.M. Baider and I.P. Skibida, Russ. Chem. Bull., 39 (1990) 646.
- 23. Y. Che, M. Tsushima, F. Mastumoto, T. Okajima, K. Tokuda and T. Ohsaka, J. Phys. Chem., 100 (1996) 20134.
- 24. H. Kotani, K. Ohkuba and S. Fukuzumi, J. Am. Chem. Soc., 126 (2004) 15999-16006.
- 25. E.L. Clennan, W. Simmons and C.W. Almgren, J. Am. Chem. Soc., 103 (1981) 2098.
- 26. C. Pozo-Gonzaloa, C. Virgiliob, Y. Yana, P.C. Howletta, N. Byrnec, D. R. MacFarlaned and M. Forsytha, *Electrochem. Commun.*, 38 (2014) 24.
- 27. P. Kiatkittikul, J. Yamaguchi, R. Taniki, K. Matsumoto, T. Nohira and R. Hagiwara, *J. Power Sources*, 266 (2014) 193.
- 28. S. Monacoa, A.M. Arangioa, F. Soavia, M. Mastragostinoa, E. Paillardb and S. Passerini, *Electrochim. Acta*, 83 (2012) 94.

- 29. C.J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson and K.M. Abraham, J. Phys. Chem. C, 116 (2012) 20755.
- 30. K. Ding, M. Zhao and Q. Wang, Russ. J. Electrochem., 43 (2007) 1082.
- 31. A. J. Bard and L.R. Faulkner, Electrochemical Methods-Fundamentals and Applications, 2nd ed., Wiley, New York (2001).
- 32. W.M. Schwarz, I. Shain, J. Phys. Chem., 69 (1965) 30.
- 33. K. Aoki, J. Osteryoung, J. Electroanal. Chem., 122 (1981) 19.
- 34. M. T. Carter, C. L. Hussey, S. K. D. Strubinger, R. A. Osteryoung, Inorg. Chem., 30 (1991) 1149.

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).