MoS₂ Flowers Grown on Graphene/Carbon Nanotubes: a Versatile Substrate for Electrochemical Determination of Hydrogen Peroxide

Mani Govindasamy, Veerappan Mani^{1,2}, Shen-Ming Chen^{1,*}, Raj Karthik¹, Kesavan Manibalan¹, Rajaji Umamaheswari³

¹Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan ²Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan

³Department of Chemistry, St. Joseph's College (Autonomous), Tiruchirappalli-620 002, Tamil Nadu, India

^{*}E-mail: <u>smchen78@ms15.hinet.net</u>

Received: 20 January 2016 / Accepted: 12 February 2016 / Published: 1 March 2016

Flower-like MoS₂ nanostructure was grown on graphene and carbon nanotubes (GR-MWCNTs) via insitu hydrothermal method and the resulting composite was employed for determination of hydrogen peroxide (H_2O_2) . The MoS₂/GR-MWCNTs composite was characterized by scanning electron microscopy, Energy-dispersive X-ray spectroscopy and electrochemical methods. MoS₂/GR-MWCNTs possess three dimensional nanostructure, large electrochemically active surface area, porosity, and high conductivity and it was used for the enzymeless electrochemical determination of hydrogen peroxide. MoS₂/GR-MWCNTs composite film modified electrode showed excellent electrocatalytic ability to the reduction of H₂O₂. The composite delivered significantly improved electrocatalytic ability to H₂O₂ in comparison with control electrodes. Furthermore, the electrode exhibited low overpotential, high faradaic current and fast response time. MoS₂/GR-MWCNTs composite film modified electrode responds quickly to H2O2 over wide working concentration range of 5 μ M–145 μ M, sensitivity of 5.184 μ A μ M cm⁻² and detection limit of 0.83 μ M. Moreover, the sensor exhibited appreciable stability, repeatability and reproducibility. Real-time application was demonstrated in biological sample which showed good recoveries. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible, good biocompatibility, electrocatalytic ability and excellent synergy between MoS₂, MWCNTs and GR.

Keywords: two dimensional layered materials, MoS₂, Graphene, MWCNTs, electrochemical sensor, hydrogen peroxide, and electrocatalysis

1. INTRODUCTION

Layered 2D transition metal dichalcogenides, such as MoS₂, WS₂, MoSe2, WSe2 etc., have received considerable interest in recent year [1]. Recent studies revealed that the electronic structure of nano-sized MoS₂ is similar to platinum and hence it has great potential to be as sustainable nonplatinum catalyst in catalysis [2, 3]. Engineering advanced nanocomposites by hybridization of two or more materials is the most promising way to overcome the shortcomings of individual components and to develop advanced materials for specific applications [4]. Graphene nanosheets (GR) and multiwalled carbon nanotubes (MWCNTs) are two widely acclaimed carbon nanomaterials to prepare functionalized hybrid nanostructures [4]. Our previous studies indicated that GR and MWCNTs hybrid (GR-MWCNTs) three dimensional nanoarchitectures is ideal building blocks to fabricate interesting hybrid materials which can also preserve the individual properties [5-8]. Till now, several MoS_2 functionalized graphene materials with different structures were developed which were shown promising applications in hydrogen evolution [2, 9], photovoltaics [10], lithium-ion batteries [11], and supercapacitors [12]. Despite the interesting attributes of MoS₂ functionalized carbon nanostructures, they were hardly explored in electrochemical sensor applications. Significant efforts have been made to develop novel MoS₂ nanostructures such as, nanosheets [13], nanoplates [14] and nanospheres [15]. Recently, MoS₂ flowers and nanoflowers were prepared for hydrogen evolution reaction [16], supercapacitors [17], lithium ion batteries [18] and dye-sensitized solar cells [19].

H₂O₂ is a vital constituent of plant tissues and regulates the plant metabolism, acclamatory processes and gene expressions [5, 20, 21]. In addition, it has excellent antiseptic and anti-bacterial properties. Also, it is widely used in industries as oxidizing, antibacterial and bleaching agents. Therefore, a sensitive and selective determination platform is necessary for the quantitative determination of H₂O₂ in clinical and industrial analysis [22]. Designing advanced multi-dimensional GR-MWCNTs hybrid structures for electrochemical sensors, biosensors and energy applications is our lab's continuous research interest [5, 8, 23, 24]. Herein, we have synthesized and characterized the MoS₂ flowers decorated GR-MWCNTs nanostructure and employed electrochemical sensing of H₂O₂. The nanostructure was prepared via *in-situ* one pot hydrothermal synthesis and employed in sensitive and selective determination of H₂O₂. The 3D hierarchical network of MoS₂/GR-MWCNTs hybrid is composed of 2D GR and MoS₂ and 1D MWCNTs nanostructures. The main objective of the present work is to prepare MoS_2/GR -MWCNTs hybrid for the sensitive and selective determination of H_2O_2 . The nanocomposite film modified electrode exhibited excellent electrocatalytic ability to reduce H_2O_2 with wide linear range, low limit of detection and high sensitivity. The preparation of the nanocomposite is simple, reproducible without required any hazardous reducing agents. The GR-MoS₂ film modified electrode possesses high electrochemically active surface area, porous and roughed surfaces, high conductivity, large edge plane sites and good biocompatibility.

2. EXPERIMENTAL

2.1 Chemicals and Apparatus

Graphite (powder, < 20 μ m), MWCNTs (bundled > 95%, O.D×I.D×length = 7–15×3–6×0.5–200 μ m), sodium molybdate (Na₂MoO₄.2H₂O), and all other reagents including solvents were

purchased from Sigma-Aldrich and used as received. All the electrochemical measurements were carried out using CHI 1205A electrochemical work station (CH Instruments, Inc., U.S.A) at ambient temperature. Electrochemical studies were performed in a conventional three electrode cell using modified glassy carbon electrode (GCE) (Bioanalytical Systems, Inc., USA) as a working electrode (area 0.071 cm²), saturated Ag|AgCl (saturated KCl) as a reference electrode and Pt wire as a counter electrode. Prior to each electrochemical experiment, the electrolyte solutions were deoxygenated with pre-purified nitrogen for 15 min unless otherwise specified. The supporting electrolyte used for the electrochemical studies was 0.05 M phosphate buffer (pH 7) prepared from sodium dihydrogen phosphate and disodium hydrogen phosphate.

Amperometric measurements were performed with analytical rotator AFMSRX (PINE instruments, USA) with a rotating disc electrode (RDE) having working area of 0.21 cm². Scanning electron microscopy (SEM) and Energy-dispersive X-ray (EDX) spectra were performed using Hitachi S-3000 H scanning electron microscope and HORIBA EMAX X-ACT (Sensor + 24V=16 W, resolution at 5.9 keV) respectively.

2.2 Synthesis of MoS₂/GR-MWCNTs and electrode fabrication

Graphite oxide was prepared from graphite by Hummers method and exfoliated to graphene oxide (GO) in water via ultrasonic agitation for 2 h [25]. Then, the GO dispersion was subjected to centrifugation for 30 min at 4000 rpm to remove unexfoliated graphite oxide. Next, 20 mg MWCNTs was added into 20 ml GO (1 mg mL⁻¹) dispersion (GO/MWCNTs; w/w=1/1) and ultrasonicated for 2 h at room temperature [7]. The unstabilized MWCNTs and excess GO were removed by subjecting two successive centrifugation cycles (30 min each) at 8000 rpm and 14000 rpm, respectively. The black color sediment (GO-MWCNTs) was washed with water (60 mL) and ethanol (6 mL) respectively and overnight dried. Next, 25 mg GO-MWCNTs powder was re-dispersed in 100 mL water (1 mg mL⁻¹) via ultrasonication for 30 min. Then, 180 mg Na₂MoO₄.2H₂O and 350 mg thiourea were added successively and stirred with magnetic stirrer for 30 min [18]. Next, the whole reaction mixture was transferred to a Teflon-lined autoclave and heated to 200°C for 24 h. The black sediment was centrifuged, washed with copious amount of water and ethanol (each washing 2 times) successively and vacuum dried in oven at 80°C for overnight. The $MoS_2/GR-MWCNTs$ composite (1 mg mL⁻¹) was redispersed in water/ethanol (v/v%; 40/60%) solvent mixture through ultrasonication for 30 min. Meanwhile, individual GR-MoS₂ and MWCNTs-MoS₂ were prepared separately by following similar procedure.

GCE surface was polished with 0.05 μ m alumina slurry using a Buehler polishing kit, then washed with water and dried. 6 μ l MoS₂/GR-MWCNTs dispersion was dropped at the pre-cleaned GCE and dried at room temperature. As control, MoS₂/GR and MoS₂/MWCNTs film modified GCEs were prepared.

3. RESULTS AND DISCUSSION

3.1 Characterization of MoS₂/GR-MWCNTs

The SEM image of GR-MoS₂ portrays thin GR sheets along with tubular networks of MWCNTs (Fig. 1A). The SEM image of MoS₂/GR depicts typical wrinkled sheet like morphology characteristics of GR and MoS₂ two dimensional sheets. The sheet thickness varies in nanometers, while length of the sheets ranging in micrometer as expected for GR sheets. EDX analysis was performed in order to confirm the elements. EDX spectrum of GR-MoS₂ (Fig. 1C) shows the signals corresponding to carbon, molybdenum and sulfur signals with weight percentages of 51.1, 12.68 and 36.21 respectively, while corresponding atomic percentages were 84.63, 7.87 and 7.51% respectively. The SEM image of MoS₂/GR-MWCNTs (Fig. 1B) shows interesting morphology, wherein flower-like MoS₂ were uniformly grown on the three dimensional interconnected hierarchical network. Besides, the SEM image shows the presence of high surface area, large wrinkled sites for catalysis and uniformity. Notably, MoS₂/GR unable to form flower structure and hence the flower formation mechanism in MoS₂/GR-MWCNTs composite should be originated from MWCNTs. As evident from the SEM image, MWCNTs are the building blocks to form MoS₂ flowers. In addition, they are acting as conducting wires to connect all the networks of flowers which facilitated good conductivity. EDX spectrum of MoS₂/GR-MWCNTs (Fig. 1D) shows the signals corresponding to carbon, molybdenum and sulfur signals with weight percentages of 61.48, 12.87 and 25.65 respectively, while corresponding atomic percentages were 88.45, 6.93 and 4.62% respectively.

Figure 1. SEM images of MoS₂/GR (A) and MoS₂/GR-MWCNTs (B). EDX spectra of MoS₂/GR (C) and MoS₂/GR-MWCNTs (D)

3.2 Electrocatalytic reduction of H_2O_2

Fig. 2A displays the cyclic voltammograms (CVs) obtained at MoS₂/MWCNTs (a), MoS₂/GR (b), and MoS₂/GR-MWCNTs films modified electrode in phosphate buffer (pH 7) containing 1 mM H_2O_2 . The scan rate was hold at 50 mV s⁻¹. The electrocatalytic ability of these modified electrodes was in the following order: MoS₂/GR-MWCNTs>MoS₂/GR >MoS₂/MWCNTs. The MoS₂/GR-MWCNTs exhibited highly enhanced electrocatalytic ability to reduce H₂O₂ which is obvious from the observed high faradaic current and less overpotential. Highly enhanced anodic peak current (I_{pa}) and low overpotential observed for the reduction of H2O2 at MoS2/GR-MWCNTs film indicates fast electron transfer kinetics and promising electrocatalytic ability of the prepared film. The control electrodes (MoS₂/GR and MoS₂/MWCNTs) had shown comparatively less electrocatalytic ability than the MoS₂/GR-MWCNTs. The outstanding electrocatalytic ability of MoS₂/GR-MWCNTs can be manifested to the great synergetic effect between MoS₂, GR and MWCNTs [26]. GR-MWCNTs are suitable matrix for the high loading of catalytically active MoS₂ by providing anchoring sites. In addition, GR-MWCNTs possess numerous edge planes like defects which enabled additional catalytic sites to access H₂O₂. Fig. 2B shows the CVs obtained at MoS₂/GR-MWCNTs/GCE in phosphate buffer (pH 7) containing 1 mM H₂O₂ at different scan rates. As shown in figure, the cathodic peak current responsible for reduction of H₂O₂ linearly increases as the scan rate increases, indicated the occurrence of surface confined H₂O₂ reduction at MoS₂/GR-MWCNTs film. Fig. 2C presents the CVs obtained at MoS₂/GR-MWCNTs/GCE in presence of various concentrations of H₂O₂ in phosphate buffer (pH 7). The cathodic peak increases linearly as the concentration of H₂O₂ increases. For voltammetric detection, the linear concentration range is observed from 1-5 mM.

Figure 2. (A) Cyclic voltammograms obtained at GR/MWCNTs (a), MoS_2/GR (b), MoS_2/GR -MWCNTs (c) films modified GCE in phosphate buffer (pH 7) containing 1 mM H₂O₂ at the scan rate of 50 mVs⁻¹. (B) Cyclic voltammograms obtained at MoS_2/GR -MWCNTs film modified GCE in phosphate buffer (pH 7) containing 1 mM H₂O₂ at different scan rates; a=0.01, b=0.05, c=0.1, d=0.15, e=0.2, f= 0.25, g= 0.3, h= 0.35, i= 0.4, j=0.45 and k= 0.5 Vs⁻¹). Inset: plot of current vs. $v^{1/2}$. (C) Cyclic voltammograms obtained at MoS_2/GR -MWCNTs film modified GCE in phosphate buffer (pH 7) containing different concentrations of H₂O₂ (a=0, b=0.1, c=0.2, d=0.3, e=0.4, f= 0.5, g= 0.6, h= 0.7, i= 0.8 and j=0.9).

3.3 Amperometric detection of H_2O_2

2959

Fig. 3A displays the amperogram obtained at MoS_2/GR -MWCNTs film modified RDE for sequential injection of H_2O_2 at regular intervals (50 s) into continuously stirred phosphate buffer (pH 7). The applied electrode potential (E_{app}) was hold at – 0.45 V, while rotation speed was fixed at 1500 rpm. Rapid and well defined responses were observed for each addition. The amperometric responses were linearly increased in the concentration range of 5 μ M–145 μ M. A plot between [H₂O₂] and I_p exhibits good linearity (Fig. 3B). Sensitivity and detection limit of the sensor were calculated to be 5.184 μ A μ M cm⁻² and 0.83 μ M respectively. The LOD of the sensor was calculated by using the formula, LOD= 3 s_b/S (where, s_b =standard deviation of blank signal and S =sensitivity) [27]. The important analytical parameters such as detection limit, linear range and sensitivity were quite comparable with previous reports [20, 28-31].

Figure 3. (A) Amperometric i–t response of MoS₂/GR-MWCNTs film modified rotating GCE upon sequential addition of 5 μ M H₂O₂ into phosphate buffer (pH 7) at the rotation speed of 1500 RPM. $E_{app} = -0.45$ V. Inset: Plot of I_p vs [H₂O₂]. (B) Amperometric i–t response of MoS₂/GR-MWCNTs film modified rotating GCE upon addition of 5 μ M H₂O₂ (a) and externally added interferents dopamine, ascorbic acid, uric acid and glucose into phosphate buffer (pH 7) at the rotation speed of 1500 RPM.

3.4 Selectivity, stability, repeatability and reproducibility

Selectivity of the sensor to the determination of H_2O_2 has been investigated in the presence of common interfering agents. Fig. 3B displays the amperometric responses of the described sensor for 100 μ M H_2O_2 (a) 0.1 mM (b) and 0.2 mM (c) dopamine, 0.1 mM (d) and 0.2 mM (e) ascorbic acid, 0.1 mM (f) and 0.2 mM (g) uric acid and 0.1 mM (h) and 0.2 mM (i) glucose. Well defined response was observed for H_2O_2 ; however, no notable responses were observed for the tested interfering species. Besides, well defined response was observed for H_2O_2 in the solution coexisting with aforementioned interferences revealed the excellent selectivity of the MoS₂/GR-MWCNTs to determine H_2O_2 .

In order to determine storage stability of the $MoS_2/GR-MWCNTs$, its H_2O_2 detection perfomance was monitored every day. During one month storage period, the fabricated modified electrode retained 91.55% of initial response current which revealing good storage stability. Repeatability and reproducibility of the proposed sensor was evaluated in phosphate buffer (pH 7) containing 50 μ M H₂O₂. The sensor exhibits appreciable repeatability with relative standard deviation (R.S.D) of 3.78% for five repeatitive measurements which were carried out using single MoS₂/GR-MWCNTs/GCE. In addition, the sensor exhibits appreciable reproducibility with R.S.D of 3.83% for five independent measurements carried out at five different MoS₂/GR-MWCNTs/GCEs.

3.5 Real sample analysis

Practical applicability of the $MoS_2/GR-MWCNTs/GCE$ was demonstrated in human serum sample. First, 2 ml serum sample was diluted to 10 ml by adding phosphate buffer (pH 7). Next, amperometry experiments were carried out using $MoS_2/GR-MWCNTs/GCEs$ and following similar optimized experimental conditions. The found and recovery values are in acceptable range. Hence, the $MoS_2/GR-MWCNTs/GCEs$ could be applicable for the real-time H_2O_2 sensing applications.

 $\label{eq:table 1} \begin{tabular}{ll} \begin{tabular}{ll} Table 1 Real-time determination of H_2O_2 in human serum sample using $MoS_2/GR-MWCNTs$ film modified electrode \end{tabular}$

Sample	Added/µM	Found/ μM	Recovery/%	*RSD/%
Human serum	10 µM	10.41 µM	104.1	3.73
	20 µM	20.52 µM	102.6	3.38

* Relative Standard Deviation of 3 individual measurements

4. CONCLUSIONS

In summary, we successfully prepared MoS₂/GR-MWCNTs nanocomposite through simple hydrothermal method. The composite was fully characterized by SEM, EDX and electrochemical methods. MoS₂/GR-MWCNTs/GCE exhibited excellent electrocatalytic ability to the reduction of H₂O₂. The fabricated amperometric sensor exhibited wide linear range (5 μ M–145 μ M), low detection limit (0.83 μ M) and high sensitivity (5.184 μ A μ M cm⁻²) for the determination of H₂O₂. Moreover, the sensor displayed appreciable stability and repeatability, reproducibity. The sensor holds great promise for real-time sensing application of H₂O₂ in biological samples. The MoS₂/GR-MWCNTs nanocomposite hold great potential for the fabrication of electrochemical sensors attributed to its large surface area, high conductivity, porosity, biocompatibility and stability.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Science and Technology, Taiwan (Republic of China).

References

- 1. J. Wilson, A. Yoffe, Adv. Phy., 18 (1969) 193.
- 2. B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc., 127 (2005) 5308.
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W.D. Lou, Y. Xie, *Adv. Mater.*, 25 (2013) 5807.
- 4. C. Tan, H. Zhang, Chem. Soc. Rev., 44 (2015) 2713.
- 5. V. Mani, B. Dinesh, S.-M. Chen, R. Saraswathi, Biosens. Bioelectron., 53 (2014) 420.
- 6. K.-Y. Hwa, B. Subramani, Biosens. Bioelectron., 15 (2014) 127.
- 7. V. Mani, B. Devadas, S.-M. Chen, Biosens. Bioelectron., 41 (2013) 309.
- 8. V. Mani, S.-M. Chen, B.-S. Lou, Int. J. Electrochem. Sci, 8 (2013) 11641.
- 9. Y. Yan, B. Xia, Z. Xu, X. Wang, ACS Catal., 4 (2014) 1693.
- 10. S. Wi, H. Kim, M. Chen, H. Nam, L.J. Guo, E. Meyhofer, X. Liang, ACS nano, 8 (2014) 5270.
- 11. K. Chang, W. Chen, Chem. Commun., 47 (2011) 4252.
- 12. L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, *Small*, 9 (2013) 2905.
- 13. Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, X. Wang, Nanoscale, 5 (2013) 7768.
- 14. H. Hwang, H. Kim, J. Cho, Nano lett., 11 (2011) 4826.
- 15. X.-Y. Xu, Z.-Y. Yin, C.-X. Xu, J. Dai, J.-G. Hu, Appl. Phy. Lett., 104 (2014) 033504.
- 16. D.H. Youn, S. Han, J.Y. Kim, J.Y. Kim, H. Park, S.H. Choi, J.S. Lee, ACS nano, 8 (2014) 5164.
- 17. G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Angew. Chem. Int. Ed, 127 (2015) 4734.
- 18. N. Lingappan, N.H. Van, S. Lee, D.J. Kang, J. Power Sources, 280 (2015) 39.
- 19. J.Y. Lin, A.L. Su, C.Y. Chang, K.C. Hung, T.W. Lin, ChemElectroChem, 2 (2015) 720.
- 20. Y. Shi, Z. Liu, B. Zhao, Y. Sun, F. Xu, Y. Zhang, Z. Wen, H. Yang, Z. Li, *J. Electroanal. Chem.*, 656 (2011) 29.
- 21. A.A. Ensafi, M. Jafari-Asl, N. Dorostkar, M. Ghiaci, M.V. Martínez-Huerta, J. Fierro, *J. Mater. Chem, B*, 2 (2014) 706.
- K. Yamamoto, T. Ohgaru, M. Torimura, H. Kinoshita, K. Kano, T. Ikeda, Anal. Chimi. Acta, 406 (2000) 201.
- 23. B. Dinesh, V. Mani, R. Saraswathi, S.-M. Chen, RSC Adv., 4 (2014) 28229.
- 24. B. Devadas, V. Mani, S.-M. Chen, Int. J. Electrochem. Sci., 7 (2012) 8064.
- 25. W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc., 80 (1958) 1339.
- 26. L. Qiu, X. Yang, X. Gou, W. Yang, Z.F. Ma, G.G. Wallace, D. Li, Chem. Eur. J., 16 (2010) 10653.
- 27. R. Devasenathipathy, V. Mani, S.-M. Chen, Talanta, 124 (2014) 43.
- 28. B. Wang, J. Zhang, G. Cheng, S. Dong, Anal. Chim. Acta, 407 (2000) 111.
- 29. V. Mani, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devi, Y. Tai, *Electrochim. Acta*, 176 (2015) 804.
- 30. S.A. Kumar, S.-M. Chen, J. Mol. Cat. A: Chem., 278 (2007) 244.
- 31. Y. Ye, T. Kong, X. Yu, Y. Wu, K. Zhang, X. Wang, Talanta, 89 (2012) 417.

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).