International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Ammonia Oxidation on the Barium Doped Nano Structured PbO₂ Electrode: An Electrochemical Preparation and Application

Karunakaran Kannan, Govindan Muthuraman, and Moon Il- Shik*

Department of Chemical Engineering, Sunchon National University, #255 Jungangno, Suncheon 540-742, Jeollanam-do, Republic of Korea. *E-mail: <u>ismoon@sunchon.ac.kr</u>

Received: 8 March 2016 / Accepted: 25 April 2016 / Published: 4 May 2016

In the present investigation, we report a novel nano structured Ba/PbO₂ prepared by electrochemical deposition method has been employed for the effective oxidation of ammonia in aqueous solutions. The electrode deposition was achieved in the boric acid bath solution that yielded a smooth deposition of PbO₂ without poisoning the supporting electrolyte. The surface characterization of the deposited layer was done using Scanning Electron Microscope (SEM), and observed that cauliflower like morphology of undoped PbO₂ was completely changed to a sharp edge like flower shape morphology due to the addition of Barium ions. The XRD characterization showed that nano crystallinity of PbO₂ gets altered with the concentration of the Barium (Ba) ion dopant. Cyclic voltammetric investigation indicated that Ba₁₀₋₅/PbO₂ electrode effectively oxidized Ammonia (NH₃) in alkaline solution, as confirmed through FT-IR spectral analyses. The prepared Ba containing electrode layer is quite promising for the oxidization of Ammonia for various industrial applications.

Keywords: Electro-deposition, Nano structure, Barium doped PbO₂, Ammonia oxidation.

1. INTRODUCTION

Ammonia is an essential natural resource for the biological as well as environmental concerns, which exists naturally in the air at levels between 1 and 5 parts in a billion parts of air (ppb). At the same time, if exceeds even slightly elevated concentrations (hyperammonemia) are toxic to the central nervous system (CNS) to the human [1]. So, detection or destruction of ammonia detection is important in the fields of the diagnosis of diseases such as renal inadequacy and diabetes [2,3,4,5] and ammonia levels rise in the blood, more ammonia is leaked into the brain, potentially leading to brain damage, leads to a condition, hepatic encephalopathy, that manifests as sleep disturbances, mood

disorders, poor cognition, anxiety, depression and movement disorders [6]. Also, ammonia determination is important in water samples where it indicates organic material decomposition which can be harmful to human health, whilst higher ammonia levels are of analytical interest in industrial operations such as refrigeration or fertilizer manufacture.

Ammonia oxidation is a slow process at low temperatures and efficient methods are required to convert ammonia to nitrogen at reasonable reaction rates. There are different methods for the oxidation of ammonia such as by thermal degradation [7,8,9], electrochemical oxidation [10], photoelectron catalytic oxidation[11], metal catalyst Pt, Pd, Ir, Ru, Ag [12], and metal oxides like Co₃O₄, MnO₂ or V_2O_5 [13], main group oxides such as SnO_2 [14], and a bimetallic mixed oxides catalyst such as Fe₂O₃-Al₂O₃[15], ZrO₂/Al₂O₃[16]. Metal oxides are more effective for ammonia oxidation but need to be operated at higher temperature. The electro-catalytic oxidation methods provide simple and room temperature destruction of ammonia. The well accepted mechanism of ammonia oxidation in alkaline solutions on Pt electrode was proposed by [17] and involves dehydrogenation of adsorbed ammonia and formation of N₂ gas. To over come these problems, we need enough technique for complete degradation of ammonia to N₂ gas. But, adsorption of atomic nitrogen blocks active sites leading to complete Pt deactivation. In the recent past, many electrodes like BDD [18], SnO₂ [19] and IrO₂ [20], have been found more effective oxidation of ammonia. In particular, Lead based alloys and oxide materials on metal substrates like Ti/PbO₂ [21], Ti/SnO₂+Sb/PbO₂ [22], CNT (Carbon nano tube)/PbO₂ [23], Ti/Pt/PbO₂ [24], and PbO₂/CPE [25], electrodes found effective oxidation of NH₃ gas. All abovementioned works were done using bulk metal or metal oxide electrodes with high precious metal loading, whereas to develop efficient and economically viable electrodes the amount of precious metals must be reduced. This can be achieved by using electrocatalysts in the form of nanoparticles dispersed on high surface area conductive supports. It is well known that ex-situ synthesis of nanoparticles ended up less adherence and conductivity problems with the support. Electrochemical in-situ nano particle preparation of bimetallic metal oxides provide not only adherence but also can be control the structure of the nano particles.

In the present work, alkali earth metal barium selected as dopant to nano structured PbO₂ electrode. It is known that alkali earth metal oxide such as MgO [26], BaO [27], have been reported be a property of sensing NO_X, In specifically BaSO₄/PbO₂ [28, 29] material have been reported. We believe that addition of Ba²⁺ion, the PbO₂ catalytic activity and adherence is increased predominantly. Here, we have synthesized nano structured Ba doped PbO₂ by electrochemical method, the optimized Ba. PbO₂ was subjected to oxidized NH₃ at NaOH medium. The composition and morphology were analyzed by the XRD and SEM respectively. Ammonia oxidation property of Ba.PbO₂ was characterized by cyclic voltammetry and FT-IR spectroscopy.

2. MATERIALS AND METHODS

Chemicals and reagents were used for the synthesis of barium doped PbO₂ electrode: $Pb(NO_3)_2$ (99.9%) Kanto Chemical Co.Ltd , H₃BO₃(99%) OCI Company Ltd, Ba(Ac)₂ (99%), Ammonia solution (25%-28%) and Na₂SO₄ (99.9%) were purchased from Daejung Chemicals &metals Co.Ltd, Na₂HPO₄

(99%) Duksan Pure Chemicals Co.Ltd, NaH₂PO₄.2H₂O (99.9%) Junsei Chemicals Co.Ltd, were used without further purifications

2.1 Electrode pretreatment

To fabricate the Ba doped PbO₂ (Ba/PbO₂), Titanium electrode of $1x1 \text{ cm}^2$ and Graphite of $1x1 \text{ cm}^2$ was used as anode and cathode respectively. The Ti anode was first sandblasted on SiC paper to improve the surface roughness, followed by sonicated in CH₃CHO to remove all un dissolved wastes. Then Ti electrode put into 40 % NaOH and boil at 80°C for 2 h, followed by washed with 15 % hot oxalic acid solution for 1 h until the solution color changed to black brownish, finally the Ti electrode washed in DI water.

2.2 Preparation of Ba doped PbO₂ electrode

0.3 M of Pb(NO₃)₂ mixed with 0.2M of H₃BO₃ in 50 ml DI water, then Ba(Ac)₂ concentration as $2x10^{-1}$ M, $2x10^{-3}$ M, $2x10^{-5}$ M, $2x10^{-7}$ M individually prepared and mixed along with above solution and heat at 65°C to get clear solution. Fig. 1. Depicted The schematic diagram of electrochemical cell, where pretreated Ti electrode was used as anode and carbon as cathode, respectively, and separated by the distance of 1cm, and the electrolysis was carried out by passing current density of 5 mA/cm² for 10 min. The Thin hard Ba/PbO₂ layer was deposited, and washed in DI water and dry at 120°C for 1 h. Hereafter, Barium ion concentrations will be denoted as Ba₁₀₋₁/PbO₂, Ba₁₀₋₃/PbO₂, Ba₁₀₋₅/PbO₂, Ba₁₀₋₇/PbO₂.

Figure 1. Schematic diagram for the electrochemical cell for anodic deposition of Ba/PbO₂ electrode

2.3 Analysis

The surface composition of as prepared Ba/PbO₂ electrode was analyzed by XRD patterns were obtained from a X'PERT-PRO X-ray diffractometer with Cu Ka radiation (λ =1.540598 Å). The morphology of the Ba/PbO₂ samples was observed by SEM (Zeiss EVO-MA10). Solution phase ammonia oxidation analysis was performed by FTIR from Thermo scientific Nicolet iS5. The cyclic voltammetry measurements were performed using standard three electrode system connected to the computer control Potentiostat/Galvanostat model Versa STAT 3 from Princeton applied Research. As prepared Ti/Ba/PbO₂ was used as working electrode, platinum plate and an Ag/AgCl were used as counter and reference electrodes, respectively.

3. RESULTS AND DISCUSSION

3.1 Surface and interface characterization of Ba/PbO₂

Fig. 2 shows the SEM image of blank PbO_2 and the Ba_{10-1}/PbO_2 electrode. A cauliflower like morphology with 13 nm in size (see insert figure), as speculated in Fig. 2a. The uniformity may be due to the use of boric acid medium, which has a tendency to maintain pH that will facilitate to inhibit $Pb(OH)_2$ intermediate formation, which passivate the electrode and inhibit the nucleation and growth of lead dioxide [30].

Figure 2. SEM images (A) PbO₂, (B) Barium doped PbO₂, (C) SEM-EDAX data for (B)

Fig. 2b. Shows SEM image of Ba_{10-1}/PbO_2 electrode, seems to be sharp edge like flower with all the wings of PbO_2 was connected towards the center point and radially arranged like sunflower. The

Insert figure shows that tiny particles with 15 nm in size on the each leaf like wings, which may be of Ba nano particles embedded on the PbO_2 surface. The presence of barium on the surface was confirmed by the Fig. 2c. SEM-EDAX with the atomic ratio of 0.22%. In the presence of barium, the PbO_2 morphology completely changed from cauliflower to a sharp edge like flower morphology that indicates barium ions influence. Similar, morphological surface is resulted in all ratios of Ba and PbO_2 .

Fig. 3 depicts the XRD of PbO₂ and different ratios of Ba/PbO₂ electrodes. Fig. 3a.emphasizes the prepared electrode as β - PbO₂ that contains the phases of 110, 101 and 200 clearly correlated with reported work [31]. When Ba²⁺ ion introduced into the mixture, the PbO₂ phases changes depending upon the Ba ion concentration. The 0.6:1 concentration ratio of Ba to Pb ion shows BaTiO₃ (2 θ values at ~ 28, 32 and 55) formation along with PbO₂ but its phase intensities have reduced and become amorphous. Further decreasing concentration of Ba ion the crystalinity of PbO₂ increased with absence of Ba ion in any form (Fig3 c-e). The peak intensity of PbO₂ at is maximum at a Ba ion concentration of 2 x 10⁻⁵ M (Fig. 3d) and the crystalinity retains, but barium peaks at 2 θ value of 28° (111) [32] shows less intensity. In overall, high concentration of Ba ion makes more BaTiO₃ along with PbO₂ and lower concentrations makes more crystalline of PbO₂ upto 2 x 10⁻⁵ M less concentration of Ba ion enhanced the PbO₂ crystalinity, in other words more nano particles formed.

Figure 3. XRD images of Barium doped PbO₂ electrodes at different concentrations: (a) PbO₂; (b) Ba₁₀₋₁/PbO₂; (c) Ba₁₀₋₃/PbO₂; (d) Ba₁₀₋₅/PbO₂; (e) Ba₁₀₋₇/PbO₂.

Fig. 4 delineates the cyclic voltammetry response for the electrodeposited PbO₂ and Ba/PbO₂ electrodes in 0.1 M PBS (Phosphate buffer solution) solution. A characteristic PbO₂ peaks such as Pb²⁺ to Pb⁴⁺ oxidation was observed at 1.8 V in forward scan and the Pb⁴⁺ to Pb²⁺ reduction peak was observed nearly at 0.9 V in the reverse scan (Fig.4 insert). At the same time, the oxidation/reduction peak currents increased, between 400 μ A to 14 mA, with decreasing concentration of Ba ion till 2 x 10⁻⁵ M (Fig.4 curves b-d). Further decreasing the Ba ion concentration, the oxidation/reduction peak current is started decreasing (Fig. 4e). The high peak current may be due to the higher surface area and

crystalinity of PbO₂ (Fig. 4d), which is well correlated with XRD results of 2 x 10^{-5} M of Ba ion (Fig.3d), where the phase intensity is higher and more crystalline of PbO₂ was observed. Therefore, the Ba₁₀₋₅/PbO₂ electrode was selected for further application.

Figure 4. Cyclic voltammetry response of PbO₂ and Ba/PbO₂ electrodes in 0.1M Phosphate buffer solution: (a) PbO₂; (b) Ba₁₀₋₁/PbO₂; (c) Ba10₋₃/PbO₂; (d) Ba₁₀₋₅/PbO₂; (e) Ba₁₀₋₇/PbO₂. Scan rate= 20 mV/s.

Figure 5. Cyclic voltammtry response of PbO₂ and Ba₁₀₋₅/PbO₂ electrodes in different pH adjusted with NaOH solution: (a) 6.5; (b) 7; (c) 9.4; (d) 10.8; (e) 11.35; (f) 12; (g) 12.35; (h) 12.7. Scan rate is 20 mV/s.

The effect of pH on the Ba₁₀₋₅/PbO₂ electrode was performed in 0.1M Na₂SO₄ solution at pH of 5.7 in the potential window corresponds to 0.0V to 2.0V (Fig.5 curve a). The pH of electrolyte slowly increased by the addition of the appropriate volume of NaOH and resulted CV are depicted in Fig.5b-i. At pH 5.7 the oxidation peak for Pb²⁺ to Pb⁴⁺ overlaid with oxygen evolution reaction and a reduction peak was existed at 0.66V in reverse scan. The oxidation peak potential is decreasing (move negative) with increasing the pH without an increase in peak current up to the pH of 11.4. There observes an addition hump like peak beyond pH 7, which corresponds to the PbO formation from Pb²⁺ ion. Similarly the reduction peak just moved towards less positive potential of 0.37 V with increasing the pH. But at pH 11.4 there observed direct oxidation of Pb²⁺ to Pb⁴⁺ (1.2 V) without an PbO intermediate peak and the reduction peak currents increased with shift in negative peak potential. At pH 12.3 there appears a single peak at 1.2 V that is responsible for α -PbO₂ with a steep raise in current that is more optimum to apply oxidation applications.

3.2 Catalytic oxidation of NH₃

Fig. 6 depicts the electro catalytic oxidation of NH_4OH on the $Ba_{10.5}/PbO_2$ electrode in the 0.01M NaOH solution. There found an oxidation peak at 1.17 V and a reduction peak at 0.27 V in the forward and reverse scan respectively (Fig.6A curve a). The oxidation peak may be related with the PbO_3^{2-} to PbO_2 and vice versa during reduction [25].

Figure 6 (A). Electrochemical oxidations of NH₄OH in 0.01M NaOH solution at Ba₁₀₋₅/PbO₂ electrode in 0.01 M NaOH solution with different concentration of NH₄OH: (a) without NH₃; (b) 1 mM; (c) 2.5 mM; (d) 5 mM; (e) 10 mM; (f) 20 mM. Scan rate is 10 mV/s. (B). Electrochemical oxidation of only PbO₂ electrode (a) and (b) in presence of 20 mM NH₄OH in 0.1 M NaOH solution at scan rate of 10 mV s⁻¹.

Also this is confirmed by no curve crossing between the forward and reverse scan, where Pb^{2+} to PbO₂ formation [33]. In presence of 1 mM NH₄OH, an oxidation peak exists at 1.06 V along with

PbO₂ oxidation peak at 1.2 V. The pre-peak may be due to the oxidation of NH₃ by adsorption on electrode surface and adduct formation between NH₃ and PbO₃²⁻, which is typical of CE mechanism (chemical reaction proceeded electron transfer reaction). The new two reduction peaks at 0.63V and 0.5 V in presence of NH₃, which is related to PbO₂ to Pb₃O₄ and PbO₂ to Pb²⁺ [33], concludes chemical reaction formation and formed Pb²⁺ during addition of NH₃. Note worth here that NH₃ oxidation has occurred at similar potential on BDD electrode [34]. But, only PbO₂ electrode shows no such oxidation of NH₃ (Fig.6B curve b) confirms the Ba influence in NH₃ oxidation. The pre-peak current increases with increasing concentration of NH₃ (Fig. 6A curve c-f) and saturated at 20 mM NH₃, which evidences the oxidation relationship between Pb²⁺ and NH₃ with influence of Ba.

Further, the bulk electrolysis done at Ba_{10-5}/PbO_2 electrode in the presence of 20 mM of NH₄OH in 60 Sec and that sample analyzed through FT-IR. The obtained results are presented in Fig. 7. There appears N-H stretching frequency peak at 1043 cm⁻¹ wave numbers in before electrolysis. After electrolysis, the N-H stretching peak complexly absent. Also, there is a huge increase in N-O symmetry stretching peak at ~1643 cm⁻¹ wave numbers clearly indicate NH₃ oxidation and formation of NO_x compounds [35]. It is known that metal oxide in base medium follows the similar mechanistic pathway [36] as shown in equations 1 and 2.

$NH_3 + 7OH^- \longrightarrow$	$NO_2^- + 5H_2O + 6e$	(1)
$NH_3 + 9OH^- \longrightarrow$	$NO_3^- + 6H_2O + 8e$	(2)

Figure 7. FT-IR spectra of initial (a) and 60 Sec electrolyzed (b) samples of 20 mM NH₄OH in 0.01 M NaOH solution. Conditions: Fixed potential = 1 V (Ag/AgCl); Electrode = Ba_{10-5}/PbO_2 with 1 cm².

4. CONCLUSIONS

The nano structured Ba doped PbO_2 was electrochemically fabricated on Ti electrode with the optimized barium concentration. Barium ion addition confirms by morphological change from Cauliflower structure sharp edge like flower structure. Low concentration of barium ion addition (Ba₁₀-

 $_{5}$ /PbO₂) demonstrates nano crystallinity of PbO₂, which is confirmed by XRD and cyclic voltammetry. Further, nano structured Ba₁₀₋₅/PbO₂ electrode effectively oxidizes NH₃ at low potential in the NaOH solution. The results are promising and can be enhanced to real applications.

ACKNOWLEDGEMENT

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (Grant No. 2014001974).

Reference

- 1. N. Thuc Phan, K. Hyun Kim, Z. Ho Shon, E. Chan Jeon, K. Jung and N. Jin Kim, *Atmos. Environ*, 65 (2013) 177-185.
- 2. M. Vidotti, L.H. Dall, S.I. Cordoba de Torresi, K. Bergamaski and F.C. Nart, *Anal. Chim. Acta*, 489 (2003) 207-214.
- 3. B.A. Lopez de Mishima, D. Lescano, T. Molina Holgado and H.T. Mishima, *Electrochim. Acta*, 43: 395-404.
- 4. A.C.A. De Vooys, M.T.M. Koper, R.A. Van Santen, and J.A.R. Van Veen, *J. Electroanal.Chem.*, 506 (2001) 127-137.
- 5. D. Giovanelli, M.C. Buzzeo, N.S. Lawrence, C. Hardacre, K.R. Seddon and R.G. Compton, *Talanta*, 62 (2004) 904- 911.
- 6. I. Suárez, G. Bodega and B. Fernández, Neuro. Chem. Int., 41 (2002) 123-142.
- 7. D. Dirtu, L. Odochian, A. Pui, and I. Humelnicu, Cent. Eur. J. Chem., 4 (2006) 666-673.
- 8. A.H.White and Wm.Melville, J. Am. Chem. Soc., 27 (1905) 373–386.
- 9. A.A. Konnov and J. De. Ruyck, Combust.Sci.and Tech., 152 (2000) 23-37.
- 10. A. Kapałkaa, S. Fierro, Z. Frontistis, A. Katsaounis, S. Neodo, O. Frey, N.de. Rooij, K.M.Udert and C.Comninellis, *Electro.Chim.Acta.*, 56 (2011) 1361–1365.
- S. Heylen, S. Smet, K.G.M. Laurier, J. Hofkens, M.B.J. Roeffaers and J.A. Martens, *Catal. Sci.Technol.*, 2 (2012) 1802–1805.
- 12. P.D. Sobczyk, E.J.M. Hensen, A.M.de. Jong and A.S.Van Santen, *Top. Catalysis*, 23 (2003) 109-117.
- 13. N.I Il'chenko, Russ. Chem. Rev., 45 (1976) 1119-1134.
- 14. F. Shao, F.H. Ramirez, J.D. Prades, J.R. Morante and N. Lopez, Proced. Eng, 47 (2012) 293-297.
- 15. R.Q. Long and R.T. Yang, Chem. Comm., 17 (2000) 1651-1652.
- 16. S.J. Juutilainen, P.A. Simell and A.O.I. Krause, Appl. Catal., B, 62 (2006) 86–92.
- 17. H. Gerischer and A. Mauerer, J. Electroanal. Chem.Interfac.Electrochem., 25 (1970) 421-433.
- 18. N.L. Michels, A. Kapałka, A.A. Abd-El-Latif, H. Baltruschat and C. Comninellis, *Electro.Commun.*, 12 (2010) 1199–1202.
- 19. T.L. Lomocso and E.A. Baranova, *Electrochim. Acta*, 56 (2011) 8551-8558.
- 20. Y. Wang, X. Guo, J. Li, Y. Yang, Z. Leiand Zhang, Open J. Appl., 2 (2012) 241-247.
- 21. R. Cossu, A.M. Polcaro, M.C. Lavagnolo, M. Mascia, S. Palmas and F. Renoldi, *Environ. Sci.Technol.*, 32 (1998) 3570-3573.
- 22. X. Ma, R. Wang, W. Guo, H. Yang, Z. Liang and C. Fan, *Int.J. Electrochem. Sci.*, 7 (2012)6012-6024.
- 23. Y.H. Song and L. Jie Ma, Advan.Mater. Res., 743 (2013) 218-222.
- 24. A. Fernandes, D. Santos, M.J. Pacheco, and L. Ciríaco and A. Lopes, *Appl.Catal. B*, 148–149 (2014) 288–294.
- 25. B. Sljukic, C.E. Banks, A. Crossley and R.G. Compton, Anal. Chim. Acta, 587 (2007) 240-246.
- 26. J.M. Tulliani, C. Baroni, C. Lopez and L. Dessemond, J.Eur. Ceram. Soc, 31 (2011) 2357–2364.

- 27. P. Vernoux and X. Li, Appl. Catal. B, 61 (2005) 267–273.
- 28. H. Karami and A. Yaghoobi, J. Clust.Sci, 21 (2010) 725-737.
- 29. C. Hamel, T. Brousse, D.B. Elanger and D. Guaya, J. Electrochemical Soc, 159 (2012) A60-A67.
- 30. K. De Wael, M. De Keersmaecker, M. Dowsett, D. Walker, P.A. Thomas, and A. Adriaens, *J.Solid State Electrochem*, 14 (2010) 407-413.
- Z. Chen, Q.Yu, D. Hui Liao, Z. Cheng Guo and J. Wu, *Trans. Nonferrous Met.Soc.China*, 23(2013) 1382–1389.
- 32. V.F. Solovyov, H.J. Wiesmann and M. Suenaga, Supercond. Sci. Technology, 16 (2003) L37-L3.
- 33. S. He, R. Xu, S. Han, J. Wang, B. Chen, J. Electrochem. Soc., 163 (2016) D265-D270.
- 34. X. Ji, C.E. Banks and R.G. Compton, Analyst, 130 (2005) 1345–1347.
- 35. J. Coates. *Interpretation of Infrared Spectra, A Practical Approach*, R.A. Meyers (Ed.) John Wiley & Sons Ltd, Chichester (2000) 10815–10837.
- 36. N.J. Bunce and D. Bejan, *Electrochim. Acta*, 56 (2011) 8085 8093.

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).