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In this study, nickel oxide films were prepared through an electrodeposition technique. NiO films were 

fabricated on Indium Tin Oxide (ITO) supports by cycling the potential between two different sets of 

limits. The electrodeposition technique which involved using the shorter potential limits was denoted 

as deposition process 1 and the technique using the wider potential limits was called deposition process 

2. Subsequently, the films fabricated by the two deposition process were evaluated as electrochromic 

materials. The results show that the Colouration Efficiency (CE) values achieved for the deposition 

process 1 and 2 were 49  cm
2 

C
-1 

and  10 cm
2
 C

-1
, respectively. The switching times of the film made 

by the first deposition process were also calculated, as this film showed improved electrochromic 

capabilities. The coloration and bleaching switching times for this NiO film are 5.7 and 7.4 seconds, 

respectively. The improved electrochromic results for the film fabricated by deposition process 1 may 

be due to the smaller potential deposition window as it produced a thinner film with no traces of 

sulphate ions on the film’s surface compared to the other NiO film produced by the second 

electrodeposition technique. The films are characterized by SEM-EDX, Raman spectroscopy and XPS. 

The regeneration of the bleach state was shown to be hindered. This may be due to conductive 

pathways involved in the reduction of the coloured state being blocked. Raman spectroscopy was used 

to determine the presence of both the Ni(OH)2 and NiOOH after the reduction event.  
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1. INTRODUCTION 

Electrochromic materials have the ability to change colour in the presence of an external 

voltage. This phenomenon is governed by the intercalation and de-intercalation of small ions into and 

out of the material layers.[1, 2] These materials have potential applications in smart windows and 
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smart devices, due to their low power consumption and high coloration efficiency (CE).[3, 4] The 

development of this technology may lead to a significant reduction in energy consumption in homes 

and offices due to the decrease in heating and cooling cost, particularly in glazed buildings. In their 

bleached state these material can allow light and heat pass through them however this is the opposite 

when these materials are in its coloured state. 

Smart windows are made from a five layered sandwich-like device inside a pane of glass. This 

device consists of a transparent conductor (TC) on either end of the device with a solid 

electrolyte/ionic conductor (IC) in the middle with a counter electrode between a TC and IC on one 

side. On the other side of the device between another TC and IC lies the active/primary electrochromic 

material. This is the layer that is responsible for the colour change within the device. 

Transition Metal Oxides or TMO’s are widely used in electrochemical energy applications e.g. 

Supercapacitors,[5-7] water splitting catalysts [8-10] and fuel cell catalysts, [11, 12] therefore it is no 

surprize that TMO’s are also a good candidate for electrochromic materials.[13, 14] Nickel oxide 

shows great promise as an active electrochromic material. Nickel oxide is a cheap, abundant and can 

be easily fabricated. Upon applying a potential of approximately 1.35 V (vs. RHE) and greater, the 

transparent Ni oxide transforms into a dark brown Ni oxide, otherwise known as the bleached and 

coloured state respectively. It is generally accepted that the cause of this coloration is due to the Ni (II) 

to Ni (III) redox process in alkaline media. [1, 15] 

 Electrochromic NiO films have been previously prepared by a variety of different methods 

including sol-gel[16], chemical vapour deposition[4], sputtering[17] and electrodeposition[15]. In this 

work, an electrodeposited procedure will be implemented for the fabrication of electrochromic thin 

films.  In this study, the nickel oxide films will be produced by multi-cycling a nickel sulphate solution 

at different lower limits. The effects of the changing of this lower limit on the materials optical 

performance will be investigated. Spectro-electrochemical techniques will be used to determine the 

optical properties (Transmittance) of the films. Subsequently, the coloration efficiency will also be 

calculated. The resulting NiO films in their coloured and bleached states will be characterised by XPS, 

Raman and SEM-EDX. 

 

 

 

2. EXPERIMENTAL  

All electrochemical experiments were undertaken in a standard three-electrode cell. The 

electrochemical measurements were performed using a high performance digital potentiostat (CH 

model 1760 D Bi-potentiostat system monitored using CH1760D electrochemical workstation beta 

software). Electrochemical measurements were taken at a constant temperature of 25 °C, using a 

thermal bath with the temperature maintained by a thermostat. All solutions were degassed for 15 

minutes before commencing any analysis, to eliminate any dissolved oxygen present in the electrolyte. 

The electrodeposition of the NiO thin films onto transparent indium-tin oxide (ITO) films were 

carried out by cyclic voltammetry using a deposition solution consisting of 0.1 M nickel sulphate,  0.1 

M sodium acetate and 0.001 M potassium hydroxide. Two different electrodeposition procedures were 

carried out during this study. The first deposition, to be termed deposition process 1, was carried out 
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by multi-cycling the potential between 0.0 V to 1.1 V (vs. Ag/AgCl reference electrode). The second 

deposition, termed from now on as deposition process 2, was carried out by cycling between the 

potential limits of -0.9 V to 1.2 V (vs. Ag/AgCl reference electrode). Both depositions were performed 

at a scan rate of 50 mV dec/s for 25 cycles and a graphite rod was employed as a counter electrode. 

Uv-vis in-situ electrochemical measurements were performed using an ALS SEC2000 

Uv/visible miniature spectrophotometer with the Visual Spectra 2.1 software. The optical absorption 

and transmittance spectra of the coloured and bleached states were recorded in the wavelength range of 

280-820 nm during polarisation. 

All Raman spectroscopy measurements were performed using a Witec alpha 300 R confocal 

Raman microscope. A 532nm diode laser was used at a power of approximately 10W to irradiate 

samples. Raman spectra were recorded using a diffraction grating of either 600 or 1800 lines per mm. 

The morphological characteristics of the NiO on the ITO electrode were determined using a Karl Zeiss 

Ultra Field Emission scanning electron microscope at an accelerating voltage between 15 KeV - 2 KeV 

at a working distance of between 7 mm - 1 mm.   

XPS measurements were carried out using a VG Scientific ESCALab MKII system using an Al 

Kα X-rays source (1486.7 eV). The sample spot size was approximately 2 mm, meaning a large area of 

the sample was analysed and spectra are indicative of the whole sample rather than discrete locations. 

For survey scans, an analyser pass energy of 200 eV was used while a pass energy of 20 eV was used 

to obtain high resolution spectra of characteristic core levels. The binding energy scale was referenced 

to the C 1s peak of adventitious carbon at 284.8 eV and the high resolution core level peaks were 

subsequently fitted using the Casa XPS software.           

    

 

3. RESULTS AND DISCUSSION 

The deposition of the nickel oxide onto the Indium Tin Oxide (ITO) substrate was performed 

and monitored by cyclic voltammetry, as the current density recorded during repetitive potential sweep 

conditions increases with increasing growth of the nickel oxide on the substrate, Figure 1(a).  

 
     

Figure 1. (a) Cyclic Voltammogram of the as-deposited nickel oxide film prepared via deposition 

process 1 (green) and deposition process 2 (purple) (b) SEM image of the as-deposited Ni 

oxide (scale bar is 100 μm)(c) EDX-Mapping of the as-deposited Ni oxide film. 
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To confirm the presence of nickel on the ITO substrate, EDX mapping was utilised in Figure 1 

(b). The raised layer in the electron image was determined to be Ni, as shown in the Ni Kα map by the 

green area, Figure 1(c). The EDX mapping was conducted at the end of the nickel oxide film as this 

allowed for comparison of a nickel oxide deposited section of the substrate and a bare ITO section. A 

film thickness’s of 100-300 nm was measured for deposition and 1-3 um for deposition 2 was 

measured for the as-deposited films by a profilometer.   

Raman spectroscopy was utilised to determine the nickel oxide species formed in the bulk of 

the bleached and coloured samples resulting from the potential applied.  Figure 2(a), shows Raman 

spectra and (b) SEM images of the electrodeposited nickel oxide films. Each film was grown, as 

previously described, then immersed in 1M NaOH and the potential of either 0.2 V (bleached) or 0.8 V 

(coloured) was applied. The film was retrieved from the NaOH solution, washed with H2O and 

analysis was conducted.  

 

 
 

Figure 2. Raman spectra of coloured and bleached states for (a) deposition process 1 and (b) 

deposition process 2   

 

Previous studies have reported that the Ni(OH)2 species produces one Raman band in the 

region of 445-465 cm
-1

 however, a shift of up to 65 cm
-1

 can be observed from this region in disorder 

or doped Ni(OH)2.[18] The bleached state, at the potential of 0.2 V, contains a Raman peak at 523 cm
-

1
. This band indicates that a disordered Ni(OH)2 is present. As the deposition solution is made up of 

nickel sulphate, it is possible that sulphate ions have been inserted into the Ni(OH)2 lattice during 

deposition causing the Ni-O vibration of the Ni(OH)2 to increase in Raman shifts. The band at 1076 

cm
-1 

confirms this, as it can be assigned to the Raman active modes of sulphate ions. The coloured 

state reveals bands at 471 cm
-1

 and 550 cm
-1 

which can be assigned to the Raman active shifts of 

NiOOH.[19] 

Figure 2(b and c), shows SEM images of the electrodeposited nickel oxide in its coloured and 

bleached states, respectively.  A cracked morphology was observed for the nickel oxide film in its 

bleached state. This cracking in nickel oxide films has been previously reported to be attributed to 

tensile stress, especially films with a thickness above 0.2 um. This explains the morphology of the 
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nickel oxide film in this study, as the thickness is 1-3um. The film became more disordered upon 

applying a potential in order to change the film into the coloured state. This disordered morphology 

may be due to the intercalation and de-intercalation of ions in and out of the films surface layers. 

Characterisation of the nickel oxide at the surface of the two states was carried out by XPS. 

Subsequently, the elemental differences in the composition of the bulk and on the surface of each of 

the samples were also investigated. 

 

 
 

Figure 3. Scanning Electron Images of (a) film formed via deposition process 1 in bleached/resting 

state (b) deposition process 1 in coloured/active state (c) deposition process 2 in 

bleached/resting state and (d) deposition process 2 in coloured/active state 

 

XPS survey spectra, Figure 4, clearly illustrate a variation between the surface chemistry of the 

bleached and coloured states. Each of the spectra contains core level peaks which can be assigned to 

nickel, oxygen and carbon. The presence of the Na 1s peak, in the bleached and coloured samples, can 

be easily explained as it is due to the electrolyte, NaOH. Samples are washed before characterisation 

techniques however electrolyte residue still remains. The In 3d peak for the coloured state increases 

significantly in intensity compared to the In 3d peak for the as-deposited film and bleached state. This 

may signify the introduction of indium moieties on the surface of the sample from the substrate due to 

the loss of some of the nickel oxide film when applying a higher potential. The lack of the S2p peak in 

Figure 4(b and d) indicates that no sulphate is present on the surface of either of the bleached or 

coloured samples for both depositions. These sulphate ions on the surface may be freed into the NaOH 

electrolyte during polarization but still remains in the bulk, as observed in the Raman Spectroscopy, 

Figure 2. 
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Figure 4. X-Ray Photoelectron survey spectra for (a) deposition 1 (b) deposition 2 (c) survey scan of 

the Sp2 region for deposition 1 (d) survey scan of the Sp2 region for deposition 2 

 

The sulphate ions observed in the as-deposited sample for the deposition 2 process, Figure 3(d), 

is more than likely be due to the electrodeposition solution as it contains nickel sulphate as a precursor. 

The decrease of the S2p core level peak in the XPS survey scan of the sample fabricated by deposition 

1 compared to that of deposition 2 is perhaps due to the longer reduction scan enabling more sulphate 

ions to be deposited onto the ITO electrode with the Ni oxide film. In both depositions, the sulphate is 

lost after the films are cycled in base, Figure 5(b and d).  

 High resolution scans of the Ni2p core level peak spectral region allowed contributions to be 

fitted to each sample. The fitting of these high resolution peaks allows the assigning of various species.   

The XPS analysis of nickel oxide species has been deemed very difficult due to the complexity of its 

multiplet splitting and shakes up peaks.[20]  The experimental Ni2p3/2 core level of the bleached and 

coloured state samples, for both deposition processes, in Figure 5, were fitted using peak positions and 

intensities similar to those used by Grosvenor et al.[20] For the deposition 2 process, the fits revealed 
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that the Ni(OH)2 is assigned to the bleached state while the NiOOH species is found on the surface of 

the coloured state sample . This correlates with the Raman spectroscopy results for the nickel oxide 

species found in the bulk. However, the fitting for the bleached and coloured sample for deposition 1, 

Figure 5(a and b), consisted predominately of Ni(OH)2. This result, is rather interesting, the Raman 

spectra for the coloured state for deposition 1 reveals that the bulk material is oxidized to NiOOH but 

the XPS shows the surface species of this material stays in the Ni
2+

 state. This may be due to an ageing 

or memory effect of the film.  

 

 
 

Figure 5. High Resolution X-Ray Photoelectron Spectra of the Ni2p 3/2 peak for (a) deposition process 

1 – bleached (b) deposition process 1 – coloured (c) deposition process 2 – bleached and (d) 

deposition process 2 – coloured.  
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3.1. Electrochromic properties 

In-situ spectroelectrochemical experiments were used to evaluate the electrochromic properties 

of the electrodeposited nickel oxide on the ITO substrate.  The colour of the nickel oxide from both of 

the depositions, in this work, switches from colourless (bleached) to dark brown (coloured) at 

potentials which are governed by the Ni(II) to NI(III) redox process in the bulk of the materials, Figure 

2 and 6. 

 

 

 

Figure 6. Optical transmittance spectra for the electrodeposited Ni oxide fabricated by deposition 

process 1 (black) and deposition process 2 (red) in its (a) bleached and (b) coloured states (c) 

colour of bleached and coloured states from deposition process 1 and (d) colour of bleached 

and coloured states from deposition process 2. 

 

The change in colour from the bleach state to the coloured state is caused by the intercalation 

and de-intercalation of the OH- ions into the Ni(OH)2 and NiOOH layers. The Colouration Efficiency 

(CE) is the most important parameter for grading the electrochromic performance of a material against 

other materials. The CE can be defined as the change in optical density per unit charge density. 

 

 
OD

CE
Q





  

 

  log b cOD T T   

 

Tb and Tc is the transmittance of the bleached and the coloured states respectively. The ΔQ is 

the difference in charge consumed per unit area, obtained from integrating the area underneath the 

cyclic voltammogram. The CE calculated for the electrodeposited Ni for deposition process 1 was 49  

cm
2 

C
-1 

while a lower CE value of 10 cm
2
 C

-1 
was achieved for deposition process 2.  
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The difference in CE values could be attributed to the mixed Ni(OH)2/NiOOH species being 

formed at the surface/bulk of the film fabricated by deposition one and the thinner film, observed in 

Figure 2 and 5. Another reason for the change in CE could be due to the increase amount of sulphate 

ions in the deposition 2 film for the as-deposited film, observed in Figure 4(d). Even though the 

sulphate ions are lost after applying a potential, the effect of this loss may affect the films ability to 

switch from the different states at the same rate as the film fabricated by deposition 1 with a smaller 

electrodeposition window. This smaller deposition window allows for no sulphate ions to be inserted 

into the final film. The larger CE value for the NiO film from the deposition 1 method indicates that 

this material has a greater change in optical properties for the same electrochemical active area than he 

NiO produced by method 2. The colouration efficiency achieved by deposition one is extremely 

comparable with CE values reported in literature for Ni oxides.[12, 13] 

To investigate the switching times of the Ni oxide material in this study with the largest CE, in-

situ UV-vis and chronoamperometry was utilised. Switching times is defined as the time it takes to 

reach 90 % of the final change in transmittance when alternating between states. To measure the 

switching times, a potential corresponding to each state was applied to the material and the current was 

recorded.  The switching times for the Ni oxide film fabricated by deposition one can be observed in 

Figure 7(b).  

 

 
 

Figure 7. (a) Coloration efficiency (CE) for the electrodeposited Ni oxide fabricated by deposition 

process 1 (black) and deposition process 2 (red) and (b) Switching times for the Ni oxide film 

fabricated by deposition 1.  

 

The coloration and bleaching switching times are 5.7 and 7.4 seconds. These  and  times 

are faster than those previously reported by Baeck et al. and Lin et al.[13, 21] Unfortunately, the 

regeneration of the initial transmittance for the bleach state is not restored following colouration 

therefore further work needs to be done on these Ni oxide materials for electrochromic applications. 

This can also be observed in Figure 7(b). Raman spectroscopy spot scans were performed on the Ni 

oxide film after the switching time experiment and revealed the presence of NiOOH and Ni(OH)2, 
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Figure 8. Therefore even though the transmittance increased indicating reduction of the NiOOH to 

Ni(OH)2, some of the NiOOH remained. This indicates only partial reduction of the Ni
3+/

dark species 

hence why the transmittance is not restored to 95%. This observation is in good agreement with the 

shape of the typical cyclic voltammetric response observed in aqueous base for an electrodeposited 

nickel oxide thin film electrode which has been grown by a potential cycling perturbation (Figure 9). It 

is clear that the shape of the current/potential profile for the anodic sweep is much sharper than that 

observed for the reverse cathodic sweep, indicating that layer oxidation is more rapid than layer 

reduction. This observation is in agreement with percolation theory. Clearly the current increases 

sharply during the anodic sweep once the percolation threshold is attained since electronic connectivity 

is established throughout the deposited film. In contrast for the reduction process conductive pathways 

within the film are cut and there may be significant regions of oxidized sites remaining within the layer 

at reducing potentials. In table 1 we summarize the relevant KPI’s for the nickel oxide thin films 

prepared in the present work and compare these with literature values. We note that the CE depends 

markedly on the potential limits used in the deposition process. Hence we conclude that the 

electrochromic properties of the oxide material will be a strong function of the synthetic route 

employed. 

 

 

 

Figure 8. Raman analysis of the Ni oxide film produced by deposition process 1 after time switching 

experiments. 

 

 

 

Figure 9. Typical CV for the NiO film produced by the deposition 1 process 
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Table 1. Comparison of Key performance indicators for the Ni oxide films fabrication in this work 

with literature values. 

 

Name  TB(%) TC(%) ΔT CE (cm2 C-1) Tc(s)/ tb(s) Ref  

Dep 1 95 45 50 49 5.7/7.4 This work 

Dep 2 80 35 45 10 n/a This work 

Ni oxide FTO 56 26 30 21 n/a [22] 

Ni oxide ITO n/a n/a n/a 42 15/5 [23] 

Conventional Ni n/a n/a n/a 25.5 6.5/12 [21] 

 

 

 

4. CONCLUSIONS 

Two electrochromic NiO materials were fabricated through a similar electrodeposition 

technique, apart from different lower depositing potentials, on a conductive ITO substrate.  The 

resulting NiO materials were characterised by XPS, SEM-EDX and Raman. The characterisation 

techniques revealed that the NiO film produced at the shorter potential window was shown to display a 

more disordered material than the NiO made at the larger potential window. Additionally, the latter 

material showed an increased amount of sulphate, which can be postulated to come from the 

deposition solution.  The electrochromic capabilities of the two NiO materials are encouraging. The 

coloration efficiency for deposition process 1 and deposition process 2 are 49 and 17 cm
2 

C
-1

, 

respectively while the switching time for deposition 1 for coloration and bleaching is 5.7/7.4 seconds. 

These switching times are faster than previously reported times for other electrodeposited NiO films 

with similar thicknesses. 
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