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In this study mesoporous Pt was electrodeposited from liquid crystal templates with different amount 

of Pt (0.60 mg/cm
2
, 1.0 mg/cm

2
 and 1.5 mg/cm

2
) directly on a carbon cloth using a potentiostatic 

method. These mesoporous Pt electrocatalysts were used as anodes for a direct ethanol fuel cell and the 

activity of ethanol oxidation reaction was studied. The electrochemical active surface area of the 

electrodes was measured using cyclic voltammetry under fuel cell conditions. Polarization and power 

curves for both commercial Pt and electrodeposited mesoporous Pt at different temperatures (30 °C, 50 

°C and 70 °C) were studied, showing an increase of the performance with the temperature as expected. 

Despite lower Pt loading, all the mesoporous samples showed similar or better performances in the 

direct ethanol fuel cell when compared with the commercial Pt sample (4.0 mg/cm
2
). These results 

show that this catalyst preparation method can be a new route for the development of more efficient Pt 

based materials for direct alcohol fuel cells applications.  
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1. INTRODUCTION 

Interest in fuel cells utilising liquid fuels for mobile applications has grown in recent years. 

Although methanol has been the most studied fuel for this type of fuel cells, ethanol presents many 

advantages as a fuel such as high energy density (8.00 kWh/kg as compared to 6.09 kWh/kg for 

methanol) and low toxicity [1]. In addition, ethanol can be produced through agricultural bioprocesses 

and thus it is considered as a renewable energy source [2]. The complete electro-oxidation of ethanol 

to CO2 involves a 12-electron process as follows:  

 

CH3CH2OH + 3H2O  2CO2 + 12H
+
 + 12e

-
                                                                       (1) 
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However, this reaction involves a dual path mechanism where the incomplete oxidation of 

ethanol to acetic acid (involving transfer of only 4 electrons) can take place reducing notably the 

energy obtained from the process. Thus effectiveness of anode catalysts is crucial for the practical 

application of this direct ethanol fuel cell (DEFC) and Pt is known as the most active material for 

ethanol electro-oxidation inducing C-C bond breaking [3]. However, oxidation of ethanol depends on 

the Pt surface structure and it has been shown that Pt nanoparticles with a high amount of (111) sites 

are active at low potentials favouring incomplete ethanol oxidation to acetic acid [4]. Pt (100) sites 

promote cleavage of the C–C bond yielding adsorbed CO, which eventually is oxidized to CO2, and 

show the highest catalytic activity at high potentials. Therefore, controlling surface structure formation 

during the synthesis of Pt particles is one approach to enhance slow ethanol electro-oxidation reaction. 

Recently, electrodeposition methods have been used for preparing membrane electrode 

assemblies (MEA) for fuel cells because this method is simple and inexpensive. Taylor et al. [5] have 

developed an electrochemical catalyzation (ECC) technique to improve the utilization of Pt catalysts. 

In this process a gas diffusion electrode is prepared from catalyst free carbon attached on a Nafion® 

membrane and Pt particles are electrodeposited from a commercial plating bath through the Nafion® 

into the electrodes.  Electrodeposited Pt using cyclic voltammetry and pulse deposition on carbon 

black has also been described for fuel cell applications. [6] A new approach to prepare MEAs based on 

pulse electrodeposition has been studied by Kim et al. [7, 8]. They have reported that with this pulse 

plating technique, the Pt/C ratio is increased up to 75 wt. % near the surface of the electrode increasing 

the efficiency.  

Our previous study in an electrochemical cell have shown that mesoporous Pt enhance the 

ethanol oxidation reaction in comparison to commercially available materials [9]. Therefore, in this 

work we have used the potentiostatic electrodeposition method to synthesize mesoporous Pt directly 

onto a carbon cloth, which was used as an anode in a direct ethanol fuel cell. These electrodes were 

characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS) and 

X-ray diffraction (XRD). The performance of the catalysts was studied in a fuel cell at different 

temperatures and with different metal loadings on the anode. To our knowledge, this electrode 

preparation method, using Pt mesoporous catalysts directly electrodeposited onto the carbon cloths has 

not been used in fuel cell earlier.   

 

 

 

2. EXPERIMENTAL 

2.1 Chemicals 

Surfactant Brij®C10 (Aldrich), hexachloroplatinic acid hydrate (HCPA, 99.9%, Aldrich), 

ethanol (94 %, Altia), H2SO4 (Merck), 2-propanol (Merck), Carbon Cloth (GDL, FuelCellsetc), 5 wt-% 

Nafion
®
 dispersion in low molecular weight alcohols (Aldrich) were used. The gases (H2, O2) were all 

produced by AGA with at least 99.99 % purity. Ion-exchanged Millipore Milli-Q water was used for 

solutions and cleaning of the electrodes.  
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2.2 Electrodeposition of Pt structures 

The substrate was a carbon cloth gas diffusion layer (GDL). First the substrates were soaked in 

0.05 M H2SO4 for at least 20 min and washed with Milli-Q water to increase the hydrophilicity of the 

surface.   

The plating mixture contained 29 wt-% HCPA, 45 wt-% Brij®C10 and 26 wt-% water. The 

mixture was stirred with a plastic spatula and heated in a sealed vial to 40 ˚C for 30 min, this process 

was repeated twice, and a bright orange color was obtained. The platinum plating mixture was added 

onto the carbon cloth electrodes using a PTFE mould with a hole matching the electrode area of 5.29 

cm
2
. The electrode system was put into a sealed box to improve the stability of the mixture and then 

placed into an oven at 40 ˚C for two hours. The mixture was slowly cooled down with an approximate 

rate of 4 ˚C /h for at least 2 h, to make sure that liquid crystal phase was well organized.  

Electrodeposition was performed on the carbon cloth surface with a deposition potential of 200 

mV varying the used charges (1.23 C/cm
2
, 2.00 C/cm

2
 and 3.00 C/cm

2
) with Pt gauze as a counter 

electrode and a Dri-Ref (World Precision Instruments, Inc.) as a reference electrode. After 

electrodeposition, the surfactant template and reactants were removed by immersing the working 

electrode in ethanol to ensure solving out of the surfactants. The carbon cloths with the deposited 

electrodes were then dried in a vacuum oven at 80 ˚C for 2 h. 

 

2.3 Fuel cell experimental 

After the electrodeposition of mesoporous Pt on the carbon cloth, the Nafion ionomer 

dispersion (~425 mg) in 2-propanol (600 μl) was sprayed on its surface followed by drying in a 

vacuum oven. The membrane electrode assembly (MEA) was prepared using the electrodeposited 

mesoporous Pt ( A: 0.60 mg/cm
2
, B: 1.0 mg/cm

2
 and C: 1.5 mg/cm

2
) on a carbon cloth as an anode and 

a commercial carbon cloth electrode (4 mg/cm
2 

of Pt covered by Nafion from FuelCellsetc) as a 

cathode. For comparison, one MEA with the commercial carbon cloth electrode with 4 mg Pt/cm
2
 as 

an anode was prepared. For MEA preparation, the carbon cloth electrodes (anode and cathode) were 

placed on each side of a Nafion 115 (Dupont) membrane and heat pressed at 120°C, with 18 kN 

pressure for 120 s. The fuel cell was assembled with PTFE gaskets, and the MEA, closed and tightened 

evenly with 10 kN force. 

The fuel cell experiments were performed in a single cell direct ethanol fuel cell (DEFC) with a 

surface area of 5.29 cm
2
. 1 M ethanol fuel was fed to the anode with 2.0 ml/min rate and humidified 

oxygen gas to the cathode at 200 ml/min. The cell was stabilized over night with the studied fuel 

(0.2 ml/min) and normalized 1 h prior to the polarization experiments with higher flow rates (2.0 ml/ 

min). For measuring at different temperatures (30 °C, 50 °C and 70 °C) the whole cell set-up was 

allowed to stabilize for 2 h with the studied fuel prior to the experiments to obtain reproducible results. 

The same MEA was used for the different temperatures. Polarization curves were measured with a 

scan rate of 50 mV/s. An Autolab PGSTAT 20 instrument equipped with an Autolab BSTR10A 

booster controlled by a GPES software (version 4.9 by Eco Chemie B.V) was used for the 

electrochemical measurements.  
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The cyclic voltammograms were measured before and after the polarization curves. For the 

cyclic voltammetry performed in the fuel cell humidified nitrogen was fed to the anode compartment 

serving as a working electrode to ensure the mass transport through the electrode layer and the 

membrane. The cathode compartment, used as a reference electrode, was fed with humidified 

hydrogen flow.  

 

2.4 Characterization of mesoporous Pt  

The mesoporous Pt samples were examined using scanning electron microscopy (SEM JSM-

7500F) coupled with energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffraction device 

(XRD, Pan Analytical X’PertPro).  

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Electrodepositions 

We have earlier shown [9] that the potentiometric deposition of mesoporous Pt on carbon black 

results in high mass activities for ethanol electro-oxidation and consequently, selected this method for 

this further study in a fuel cell.  Electrodeposition was performed on the carbon cloth surface with a 

deposition potential of 200 mV varying the used charges (A: 1.23 C/cm
2
, B: 2.00 C/cm

2
 and C: 3.00 

C/cm
2
) in order to obtain different Pt loadings. Electrodeposition charge and the calculated theoretic 

mass of platinum on the electrodeposition surface of 5.29 cm
2
 are shown in Table 1.  

 

Table 1. Electrodeposition parameters for three mesoporous samples. 

 

Anode Q ( C ) Qs ( C/cm
2
) m Pt ( mg ) ms Pt ( mg/cm

2
) 

A 6.53 1.23 3.30 0.62 

B 10.61 2.00 5.35 1.00 

C 15.85 3.00 8.00 1.51 

 

3.2 SEM and XRD characterization 

The morphology and the size of the particles of both the commercial carbon cloth electrode and 

the electrodeposited mesoporous Pt on the carbon cloth were investigated by SEM ( Figures 1 and 2). 

The commercial Pt particles were spherical in shape and packed very densely on the surface. The 

anodes with different mesoporous Pt loadings are shown in Figure 2 a) 0.6 mg/cm
2
, b) 1.0 mg/cm

2
 and 

c) 1.5 mg/cm
2
. These images show that an increase in the metal loading results in more dense,  

compact and aggregated structures. The particle size obtained from Figure 2 increases as Pt loading 

increases due to the agglomeration.  
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Figure 1. SEM images of the commercial carbon cloth electrodes (4 mg/cm
2 

of Pt covered by Nafion 

ionomer), scale bar 1μm (left) and 100 nm (right). 

 

 
 

Figure 2. SEM images of the electrodeposited mesoporous Pt on the carbon cloth with a) 0.6 mg/cm
2
 

(scale bar 1μm), b) 1.0 mg/cm
2
 (scale bar 1 μm) and c) 1.5 mg/cm

2
 (scale bar 1 μm).  
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It is plausible that with a higher Pt loading new particles are formed in between and on top of 

the old Pt particles and these structures are observed as agglomerates as suggested in our erlier reserch 

investigating the growth mechanism [9].  

 

 
Figure 3. EDS spectrum of electrodeposited mesoporous Pt with 1.0 mg/cm

2 
loading. 

 

 
 

Figure 4. SEM images of elemental (Pt, C and F) distribution on the GDL surfaces with:  a) 0.6 

mg/cm
2
, b) 1.0 mg/cm

2
 and c) 1.5 mg/cm

2
 of mesoporous Pt. 

 

 

In that study, TEM results showed that in these mesoporous Pt structures the size of the 

particles varies from 50-400 nm with very small (approximately 3-5 nm) pores. The SEM images 

reported here resemble our previously reported ones on mesoporous Pt on glassy carbon substrate [9] 
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with a particle size range around 300-900 nm.  The elemental analysis of the mesoporous Pt samples 

on the carbon cloth was also done by EDS, and the spectrum for the anode with 1 mg/cm
2
 Pt is shown 

in Figure 3. The observed F and C peaks originate from the Nafion ionomer and the carbon cloth. The 

mapping of the anode surface for the 3 elements detected in the EDS spectrum and the respective SEM 

images for the investigated carbon cloths with the different Pt mesoporous loadings is shown in Figure 

4. It is clearly observed that a good distribution of the Pt catalyst on the surface is obtained with this 

electrodeposition method. 

The XRD patterns of the studied mesoporous and commercial Pt catalyst samples with different 

amount of Pt are shown in Figure 5. The characteristic peaks assigned to the face-centered cubic (fcc) 

crystal of Pt can be observed in the diffractograms for all the samples.  The 2θ values of 39.60, 47.5, 

67.60 and 81.5 corresponding to the (111), (200), (220) and (311) faces, respectively, can be identified 

(JCPDS card 01-087-0647). Other features on the diffractograms origin from the carbon cloth and the 

ionomer as can be seen from the spectrum for the bare carbon cloth. The spacing and lattice parameters 

of mesoporous Pt can be calculated from the width of the peaks using the Bragg’s law: 

          (2) 

             

            (3) 

 

where λ is the X-ray wavelength (Cu target 1.540 Å), θ is the Bragg angle in radians and a is 

the lattice parameter. The calculated d and a values for the (111) and (220) peaks of all the samples are 

shown in Table 2.  

 

 
 

Figure 5. XRD spectrum of a)  mesoporous Pt 0.6 mg/cm
2 

b) mesoporous Pt 1.0 mg/cm
2
 c) 

mesoporous Pt 1.5 mg/cm
2
,  d) commercial Pt 4.0 mg/cm

2
 and e) bare carbon cloth 
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Broader peaks observed in the XRD spectra (Figure 5) for the mesoporous Pt samples indicate 

smaller crystallite sizes in comparison to the commercial Pt. The lattice parameters for all the 

measured samples show lower values than bulk Pt (3.9236) [10] which can be explained by the sizes 

effect. The lattice parameter of the commercial Pt electrode is slightly bigger than that of the 

mesoporous Pt samples indicating that the former one has bigger crystallites. However, the sample 

with the lowest Pt loading (0.6 mg/cm
2
) has the highest lattice parameter which favours complete 

ethanol oxidation reaction by the C-C bond breaking [3]. 

 

Table 2. Particle d spacing and lattice parameters for the commercial reference and the Pt mesoporous 

samples with different loadings obtained from equations 1 and 2. 

 

Anode with Pt 

mass ( mg/cm
2 

) 
Plane 2Ɵ d spacing (Å) a  (lattice parameter) (Å) 

4.0* 111 40.08 2.25 3.90 

  220 67.79 1.38 3.92 

          

A:       0.6 111 40.09 2.25 3.90 

  220 67.86 1.38 3.91 

          

B:       1.0 111 40.17 2.25 3.89 

  220 67.9 1.38 3.91 

          

C:       1.5 111 40.5 2.23 3.86 

  220 68.22 1.38 3.89 

 

    *Commercial reference sample 

 

3.3 Electrochemical Measurements: Cyclic voltammogram 

Cyclic voltammograms recorded at 50 mV/s for MEAs with different platinum loadings are 

shown in Figure 6. The current densities are presented both normalized to the surface active area (a) 

and to the Pt loading (b). Hydrogen adsorption and desorption peaks on the Pt nanoparticles and 

mesoporous Pt catalysts can be observed at ~0.14 V and ~0.28 V followed by the double layer region, 

as expected for polycrystalline Pt electrodes. In Figure 6B, it can be observed that with the lowest 

loading Pt sample (0.6 mg/cm
2
) the double layer is broader due to an effect of carbon indicating that 

there are some Pt free areas on the surface and the mesoporous particles are not as agglomerated as in 

other samples (1.0 mg/cm
2
 and 1.5 mg/cm

2
). The electrochemical active surface area (EASA) was 

determined using the charge involved in the hydrogen adsorption/desorption reactions, corrected for 

the double layer region [11] using the following equation  

 

 

           (4) 

    

21.0

HQ
EASA 
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where QH is the integral charge for hydrogen desorption (mC/cm
2
), and 0.21 is the charge 

required to oxidize a monolayer of H on Pt surface (mC/cm
2
). The obtained results are reported in 

Table 3. As expected, the EASA values increase with the Pt loading due to the increase of the number 

of mesoporous Pt particles. However, the increase is not proportional to the Pt loading as can be 

observed by the mass specific area values. This can be explained by particle size effect (i.e. changes in 

the volume to surface area ratio) and increasing agglomeration of the particles with increasing Pt 

loading, as is observed in the SEM images in Figures 3 and 4 resulting in a decrease in the relative 

number of active surface sites. The macroscopic size of the particles observed here varied in the range 

300-900 nm. 

 
 

Figure 6. Cyclic voltammograms for anodes MEA with different amount of platinum loadings at 50 

mV/s: current densities normalized for a) the electrochemical active surface area (EASA) and 

b) and for the Pt loading. 
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Table 3. The EASA values. 

 

Andoe with Pt 

mass (mg/cm
2
) 

EASA 

(cm
2
) 

Mass of the Pt on the electrode 

(mg) 

Mass specific area 

(m
2
/gPt) 

4.0* 2380 29 8.2 

A:   0.6 106 3.7 2.9 

B:   1.0 176 7.3 2.4 

C:   1.5 216 11 2.0 

 

      

*Commercial sample  

 

3.4 Performance of the direct ethanol fuel cell 

The polarization and power curves for the commercial Pt and electrodeposited mesoporous Pt 

electrodes with the different platinum loadings operating in a temperature range from 30 °C to 70 °C 

are shown in Figure 7 (normalized against total platinum mass) and Figure 8 (normalized against 

EASA). For all the samples, the current density increases with the temperature as expected. The results 

in Figure 7 show good performance for the electrodeposited mesoporous anodes for all the measured 

temperatures. At 70
o
C higher performance was observed for the commercial sample with the highest 

amount of platinum (4.0 mg/cm
2
). The open circuit potential (OCP) for the commercial Pt anode is 

approximately 0.46 V whereas the OCP values for mesoporous Pt are slightly lower, (0.37-0.42 V). 

These results are very interesting as they show almost the same mass activity for all the samples, 

independently of the physical structure of the Pt catalyst (commercial nanoparticles and mesoporous).  

The peak power density normalized with the geometrical area of the cell for the commercial 

sample with 4.0 mg/cm
2 

is 5.1 mW/cm
2
.
 
This value is slightly higher than ~3 mW/cm

2
 reperoted by 

Rousseau et al. [12] and 3.33 mW/cm
2 

by Figuereido et al. [13] with Pt/C loadings of 3 and 2.3 

mg/cm
2
, respectively. It is well known that the fuel cell performance increses with incresading catalyst 

loading as more active sites are available for the electrocatalytic reactions explaining the higher power 

density measured in this study. As the loadings, and morphology, of the electrodeposited measoporous 

Pt differ notably from that of the commercial reference using geometric area is not good basis for 

comparing the performance but values normalized with the mass loading or active Pt area are used 

instead. 

A summary of the performances of the direct ethanol fuel cell with the four studied samples is 

presented in Table 4.  The results showed that at the low temperature of 30 °C the anode with 0.6 

mg/cm
2
 Pt loading has the highest power density of 0.213 mW/mgPt while the commercial sample with 

the loading of 4.0 mg/cm
2
 Pt (the sample with the highest Pt loading) has a lower power density 0.201 

mW/mgPt. It is also observed that the temperature dependency changes with the loading. The higher the 

Pt loading the higher the increase in the power density, for example the power densities for the 

commercial sample (4.0 mg/cm
2
 Pt loading) are 0.649 mW/mgPt at 50 °C and 1.213 mW/mgPt at 70 °C 

and for mesoporous Pt (0.6 mg/cm
2
 loading) are 0.433 mW/mgPt at 50 °C and 0.866 mW/mgPt at 70 

°C.  



Int. J. Electrochem. Sci., Vol. 11, 2016 

  

7641 

 
Figure 7. The polarization and power curves for commercial Pt and electrodeposited mesoporous Pt 

with the different platinum loadings operating in temperatures 30 °C, 50 °C and 70 °C in a 

direct ethanol fuel cell. The results are normalized against the total platinum mass.  

 

 
Figure 8. The polarization and power curves for commercial Pt and electrodeposited mesoporous Pt 

with the different platinum loadings operating in temperatures 30 °C, 50 °C and 70 °C in a 

direct ethanol fuel cell. The results are normalized against EASA. 
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It is worth noticing that when normalized with respect to the Pt mass even the Pt mesoporous 

anode with only 0.6 mg/cm
2
 of metal has similar performance to the commercial sample with 4 

mg/cm
2
. On the other hand, when the polarization and power curves are normalized for the EASA, the 

relative performance of the Pt mesoporous anodes increases significantly in comparison with the 

commercial and high loading Pt sample, for example the mesoporous anode with 0.60 mg/cm
2
 Pt 

loading has the highest power density 0.007 mW/cm
2
 at 0.055 mA/cm

2
 at 30 °C (see Table 4).  

However, when comparing the Pt loadings on the electrodeposited mesoporous samples, it can 

be observed that the fuel cell performance is not proportional to the Pt loading on the anode, as 

expected on the basis of the similar mass specific areas (Table 3). A possible explanation for this 

behaviour is the lower agglomeration of the particles for low loadings as observed from the SEM 

images (Figure 4) facilitating mass transfer. In addition, the low Pt content anode (0.6 mg/cm
2
) has 

particles with the higher lattice parameter (XRD results in Table 2) favouring ethanol oxidation 

reaction by the C-C bond breaking [3]. The same behaviour, higher ethanol oxidation currents for 

lower Pt loadings in the mesoporous electrodes was observed in our previous work [9]. These results 

show that the structure of the Pt catalyst has a crucial influence on the fuel cell performance and 

mesoporous structures seem to favour ethanol oxidation at low temperatures.  

 

Table 4. Summary of performances of direct ethanol fuel cells using the commercial Pt and 

electrodeposited mesoporous Pt (0.6 mg/cm
2
, 1.0 mg/cm

2
 and 1.5 mg/cm

2
) as an anode catalyst 

at different temperatures.  

 

    

Current density 

(mA/mgPt) 

Max. 

power 

density 

(mW/mgPt) 

Current density 

(mA/cm
2
) 

Max. 

Power 

density 

(mW/cm
2
) 

Catalyst (mg/cm
2
) OCP V 0.30 V  0.05 V 

 

0.30 V 0.05 V   

30 ˚C 

Commercial Pt 4.0 0.456 0.363 2.180 0.201 0.003 0.019 0.002 

 A:  mesoPt 0.6 0.390 0.247 3.056 0.213 0.009 0.095 0.007 

 B:  mesoPt 1.0 0.370 0.071 2.007 0.133 0.002 0.061 0.004 

 C:  mesoPt 1.5 0.443 0.395 1.987 0.174 0.015 0.074 0.006 

50 ˚C 

Commercial Pt 4.0 0.461 1.245 6.899 0.649 0.011 0.061 0.006 

 A:  mesoPt 0.6 0.419 0.669 6.019 0.434 0.020 0.188 0.014 

 B:  mesoPt 1.0 0.415 1.209 6.910 0.616 0.037 0.210 0.019 

 C:  mesoPt 1.5 0.411 0.926 5.655 0.477 0.034 0.210 0.018 

70 ˚C 

Commercial Pt 4.0 0.462 2.399 12.754 1.213 0.021 0.113 0.011 

 A:  mesoPt 0.6 0.414 1.255 11.298 0.866 0.040 0.353 0.027 

 B:  mesoPt 1.0 0.430 1.331 11.182 0.877 0.040 0.340 0.018 

 C:  mesoPt 1.5 0.391 0.872 9.950 0.740 0.032 0.369 0.027 
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4. CONCLUSIONS 

In this preliminary work, we have shown that mesoporous Pt is a promising anode catalyst for 

ethanol oxidation in DEFCs especially at low operation temperatures. Mesoporous Pt samples were 

electrodeposited using a potentiostatic method from liquid crystal templates. SEM characterization 

showed that the structures are porous with a particle size range around 300-900 nm and the sizes of 

pores are around 3-5 nm [9].  Polarization and power curves for both the commercial Pt and the 

electrodeposited mesoporous Pt at different temperatures (30 ° C, 50 °C and 70 °C) were studied, 

showing an increase in the performance with the temperature. All the mesoporous samples show better 

or similar performance in the direct ethanol fuel cell when compared with the commercial Pt sample 

(4.0 mg/cm
2
).  

In this study we have shown that this electrodeposition method is easy and fast when 

comparing to the power/ink method for preparing MEAs for fuel cell electrodes. Moreover, with this 

electrodeposition method a separate carbon support is not needed as the catalyst is directly 

electrodeposited onto the carbon cloth diffusion layer and a good activity is achieved with a low Pt 

loading. Thus this kind of electrodeposition method can be a new route for the development of more 

efficient catalysts for direct alcohol fuel cells.  

 

ACKNOWLEDGEMENTS 

The authors would like to thank Dr. Markus Valkeapää for assistance with XRD and Prof. Kyösti 

Kontturi for scientific discussion. Aalto University is acknowledged for funding. This work made use 

of the Aalto University Nanomicroscopy Center (Aalto-NMC) premises.   

 

References 

1. M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W Daud, International J. Hydrogen 

Energy, (2013) 9438. 

2. K.S. Roelofs, T. Hirth,  T. Schiestel, Mat. Sci. Engineer. B, (2011) 727. 

3. W.J. Zhou, S.Q. Song, W.Z. Li, G.Q. Sun, Q. Xin, S. Kontou, K. Poulianitis, P. Tsiakaras, Solid 

State Ionics, (2004) 797. 

4. C. Buso-Rogero, V. Grozovski, F.J. Vidal-Iglesias, J. Solla-Gullon, E. Herrero, J.M. Feliu, J.Mat. 

Chem.A (2013) 7068. 

5. E.J. Taylor, E.B. Anderson, N.R.K. Vilambi, J.Electrochem.Soc. (1992) L45. 

6. A.J. Martin, A.M. Chaparro, M.A. Folgado, B. Gallardo, L. Daza,  ESC Transactions, (2008) 13. 

7. H. Kim, B. Popov, Electrochem. Solid-State Lett. (2004) A71. 

8. H. Kim, N.P. Subramanian, B.N. Popov, J. Power Sources, (2004) 14. 

9. N. Doan, T. Sundqvist, P. Hiekkataipale, J. Korhonen, J. Ruokolainen, T. Kallio, C. Johans, K. 

Kontturi, Int. J. Electrochem. Sci., (2015) 2235.  

10. J.W. Arblaster, Platinum Metals Rev., (1997) 12. 

11. A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, J. Power Sources, (2002) 13. 

12. S. Rousseau, C. Coutanceau, C. Lamy, J.-M. Leger, J. Power Sources 158 (2006) 18-24 

13. M.C. Figueiredo, O. Sorsa, R.M. Arán-Ais, N. Doan, J.M. Feliu, T. Kallio, Journal of Catalysis,  

(2015) 69 

 

© 2016 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/).   

http://www.electrochemsci.org/

