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Stainless steels are found in various aerated aqueous electrolytes in a passive state which protects them 

from corrosion. In many aggressive solutions, stainless steels are easily depassivated, which can lead 

to different types of corrosion. This paper tested the impact of chloride ions at different concentration, 

temperatures and pH values on the corrosion and pitting potential of AISI 304 stainless steel. In order 

to predict the behaviour of AISI 304 stainless steel design of experiment and artificial neural network 

methods were applied. Results of the developed models showed good agreement with the experimental 

results and no significant differences between models. 
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1. INTRODUCTION 

Austenitic and austenitic-ferritic steels (duplex), which consist of 17 % - 25 % Cr and 5 % - 25 

%  Ni , often alloyed with Mn, Mo, as well as other elements, are among the most important stainless 

steels. These steels are resistant to corrosive electrolytes if their whole surface is passive i.e. covered 

with a Cr2O3 oxide film [1-3]. A damaged oxide film leads to the depassivation of the steel surfaces. In 

aqueous electrolytes the steel surfaces become active and corrode. Localised depassivation is 

especially dangerous because only a small surface area is active, so active-passive galvanic cells with 

small anodes are created in the electrolyte, which corrode with a large cathode [4, 5]. Once the pit is 

formed, autocatalytic process occurs meaning that concentration of Cl
-
 ions and Me

Z+
 ions in the pit 

increase and pH values decreases. This phenomenon is detrimental to thin stainless steel structures. 
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The final outcomes of local corrosion are perforations on the pipe walls and tanks, as well as 

deformations and fractures on loaded steel parts.  

The most detrimental corrosion type on stainless steel is pitting corrosion, which causes narrow 

and localised damages in the form of pits, which are equal or bigger in size than the defect opening on 

the metal surface. The pits can often spread sideways with reference to the pit opening (sub-local 

damages). Pitting corrosion is present in media which can passivate the steel to some extent, but which 

also contain activators for forming pit nucleuses at passive film defects. The most common passivator 

is oxygen, which enters the solution from the atmosphere. The strongest activator is Cl
-
, and similar 

behaviour can be observed in Br
-
, S2O3

2-
 and some other anions [6-8].  

In order to protect damage caused by corrosion, which can lead to disastrous consequences, it is 

important to monitor its emergence and further growth. For this purpose, an experimental research was 

made and two models, to predict occurrence and behaviour of corrosion, were developed. 

Experimental research included observation of corrosion and pitting potential on AISI 304 stainless 

steel at different temperature, pH value and chloride ions concentration. A total of seventy two 

experimentally obtained data were used in design of experiments (response surface methodology). The 

same data were used for artificial neural network modelling, of which 44 data were used for training, 

14 for validation and 14 for testing. The research in this paper has applied the back propagation model 

which uses supervised learning and feed forward recalling. Both models were developed with aim to 

predict behaviour of corrosion and pitting potential on AISI 304 in different environmental conditions. 

 

 

 

2. MATERIAL AND METHODS 

2.1. Experimental research 

In experimental research austenitic stainless steel (AISI 304, W.Nr. 1.4301 or X5CrNi18-10) 

with an exposed area of 1 cm
2
 was used. Electrochemical measurements of corrosion potential (Ecorr) 

and pitting potential (Epit) were obtained using the standard three-electrode system. The capacity of the 

polarisation cell used was 1000 mL. The electrode was polished with emery paper 600, washed in 

distilled water, and degreased in ethyl alcohol before use. The counter electrode was graphite and the 

reference electrode was a saturated calomel electrode. Prior to all electrochemical measurements, 

working electrodes immersed at open circuit potential for one hour to form a steady-state passive film. 

Potentiodynamic polarization curves were measured potentiodynamically at scan rate of 5 mV/s 

starting from -0.1 V (vs. Ecorr) to 1.2 V. Measurements were taken using the Potentiostat/Galvanostat 

Princeton Applied Research Versa Stat 3 with VersaStudio software. 

According to the literature data, AISI 304 steel is applicable in media which contain 200 ppm 

of chlorides [9-11]. Hence, the model solutions containing chloride ions in distilled water at the 

concentrations in range of 25 ppm - 200 ppm were prepared, at the temperature between 20 
o
C - 80 

o
C 

and at three different pH values.  

Because of the fact that selected input parameters were varied on different levels, temperature 

was observed on four levels (20, 40, 60 and 80) 
o
C, pH value on three (1.5, 3.5, and 6.5) and chloride 
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concentration on six levels (25, 50, 75, 100, 150, and 200) ppm, full factorial DOE was used. To 

include all selected parameters and to cover all possible combinations, 72 experimental measurements 

were done. 

 

2.2. Design of experiment modelling – Response Surface Methodology 

Through the concept of design of experiment based on possibility of controlling influence 

parameters in research process, influence of monitored parameters on the appearance of corrosion, is 

defined. As basic tool in analyzing the experiment, response surface methodology was applied. 

Seventy-two experimentally obtained values of Ecorr and Epit at different chloride concentrations in 

distilled water, pH and temperature, were used to model the corrosion and pitting behaviour of AISI 

304 stainless steel. In order to eliminate influence of non-controlling disturbances, the principle of full 

randomization of experiment was applied. Also, all input parameters were displayed as continuous 

numeric variables with aim to obtain response surfaces. 

 

2.3. Artificial neural network modelling 

Second selected method for the prediction of corrosion appearance and pitting corrosion was 

artificial neural network (ANN). The taxonomy of ANN is differentiated by learning as supervised or 

unsupervised, and by recalling as feedback or feed forward models [12, 13].  

ANNs are modelled as mathematical structure of interconnected computational units, neurons. 

Neurons pass information to each other through weighted connections. The weight of the connection 

are iteratively calculated based on presented ‗experience‘, i.e. known input-output data pairs, or 

‗causes and consequences‘ data. The initial network weights are usually set at small random values 

[14]. This method was also applied to this research. After the learning process, the neural networks 

become adaptive to inputs. The larger and more differentiated ‗experience‘ is presented to the network, 

the better the predictive skills will be. It is said that the neural networks are actually capable of 

learning almost any presented problem. 

An artificial neural network has a group of nodes that are all interconnected, which is a model 

transferred from the structure of the neurons in the brain. Each node is an artificial neuron and the 

arrows represent the connections of the neuron outputs to the input of the next neurone. Each 

connection has its own ‗importance‘, which is expressed in weights. The number of the input neurones, 

which form input layer, is equal to the number of input variables of a studied problem. Similarly, the 

number of the output neurones is equal to the number of output variables of the problem. Output 

neurones form the output neurone layer. Therefore, the size of the input and output layers is 

determined by the problem which has to be solved. Between these two layers, one or more hidden 

neurone layers should be placed. The number of hidden layers is usually set to one, since the increased 

number of hidden layers does not contribute to an increase in learning accuracy. Moreover, additional 

hidden layers would make the computing far more complex and slower. What has to be optimised is 

the number of neurones in the hidden layer. Again, if there are too many hidden neurones, the training 
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may become too slow. In addition, an excessively complicated network model with too many neurones 

may cause over fitting. There are several methods for the determination of the best hidden layer 

architecture. One of them is the monitoring of change of error in the testing dataset. This method was 

used to determine the optimal network architecture which contains seven hidden neurones (Figure 1). 

If the assumption that the error curve of the entire problem is almost the same as the error curve 

obtained by using the available experimental data for neural network learning, then the learning should 

be stopped when the error curve reaches its minimum. A usual procedure used by neural network 

learning is to divide the set of available data into three subsets: one for the training, second for the 

validation, and a third subset for testing sets.  The training subset is used as the primary dataset. It is 

applied to the artificial neural network for its learning, i.e. adaptation to the specified problem. The 

validation subset is used during the learning iterative process, in order to achieve a better, more 

adapted neural network structure. Finally, after the network has been trained, its performance is tested 

by using the testing data subset. 

In recent research, artificial neural networks are being used and compared to other 

approximation or statistical methods for solving different prediction problems of various materials 

properties and process parameters [15-20]. 

 

 
Figure 1. Determining the best number of hidden neurones 

 

Figure 2 shows the architecture of the developed neural network: three inputs (pH, temperature 

and Cl
-
 concentration), seven hidden neurones and two outputs (Epit and Ecorr), which means the 

network gives simultaneously two output variables. The input vector containing three input variables is 
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multiplied by the weight matrix of the hidden layer, w1. The weighted input is then added to the bias 

vector of the hidden layer, b1, which together form the input to the transfer function of the hidden 

neurones.  

 
Figure 2. The neural network architecture used for predicting Epit and Ecorr 

 

The bias vector can be seen as shifting the transfer function left or right at the origin. Transfer 

function that was set to the hidden neurone layer was hyperbolic tangent sigmoid transfer function: 

 
 

(1) 

This transfer function is mathematically equivalent to tanh, but it works much faster than the 

Matlab use of tanh, and the results have very small numerical differences [21, 22]. The next step is to 

multiply the output from the transfer function with the weights of the output layer,w2, add the bias 

vector of the output layer, b2, and pass it all again through the transfer function of the output layer. 

This finally gives the output of the neural network. In order to obtain any number at the network 

output, it is convenient to put the linear transfer function in the output neurone layer. The weight 

matrices of the modelled and trained neural network were finally: 
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(2) 

 

(3) 

 
(4) 

 
(5) 

 

 

 

3. RESULTS AND DISCUSSION  

Results from measurements of corrosion and pitting potential obtained from potentiodynamic 

polarization curves are given in Tables 1 and 2. Potentiodynamic polarization curves obtained from 

measurements are given in Figure 3.  

 

 

Figure 3. Potentiodynamic polarization curves  
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By comparing the polarization curves in different solution, the corrosion potentials were found 

to shift towards negative direction with increase in concentration and temperatures. Values of pitting 

potential showed tendency to decrease with an increase in Cl
−
 concentration and temperature, whereas 

increase with increase pH values. The same behaviour in occurrence of pitting corrosion, but on AISI 

304L is expressed in [1]. In the presence of chlorides, increases in temperature influenced pit growth 

and decrease the pitting potential. 

 

Table 1. Experimental results for Ecorr 

 

Ecorr 

(mV/SCE) 

Temperature (°C) 

20 °C 40 °C 60 °C 80 °C 

pH pH pH pH 

Cl
- 
(ppm) 1.5 3.5 6.5 1.5 3.5 6.5 1.5 3.5 6.5 1.5 3.5 6.5 

25 -250 -215 -150 -275 -215 -145 -353 -295 -287 -253 -245 -278 

50 -255 -219 -155 -271 -219 -150 -357 -299 -295 -255 -229 -281 

75 -258 -228 -158 -282 -228 -153 -358 -328 -302 -258 -228 -295 

100 -260 -233 -160 -285 -233 -176 -362 -333 -316 -267 -223 -306 

150 -265 -235 -165 -291 -235 -183 -365 -341 -320 -269 -214 -314 

200 -267 -239 -167 -297 -239 -197 -397 -349 -327 -289 -203 -321 

 

Table 2. Experimental results for Epit 

 

Epit 

(mV/SCE) 

Temperature (°C) 

20 °C 40 °C 60 °C 80 °C 

pH pH pH pH 

Cl
- 
(ppm) 1.5 3.5 6.5 1.5 3.5 6.5 1.5 3.5 6.5 1.5 3.5 6.5 

25 820 918 1110 765 911 1005 552 781 911 452 678 899 

50 815 914 1102 734 904 987 515 714 902 411 614 890 

75 813 913 1094 713 883 974 510 711 897 404 608 881 

100 790 909 1083 709 859 983 491 709 891 381 601 836 

150 783 983 1079 698 853 979 484 687 886 378 587 826 

200 771 977 1077 680 847 975 471 666 875 361 543 855 

 

For all temperatures states, with increased chloride concentration, analyzed steel is in active 

state. Results are given with extended measurement uncertainty U = 50 mV/SCE, coverage factor k = 2 

and probability P = 95%. Measurement uncertainty is non-negative parameter characterizing the 

dispersion of the quantity values being attributed to a measurand, based on the information used [23-25]. 

With increases in temperature and chloride ions concentration, passivity area is far shorter at 

lower pH values. Pitting potential, Epit, decreases with increase in chloride ion concentration and 

temperature. Epit increases with increased pH value at same Cl
-
 concentration levels. Results are given 

with extended measurement uncertainty U = 70 mV/SCE, coverage factor k = 2 and probability P = 95 %.  

Based on the results, prediction of corrosion occurrence and behaviour in global and also 

behaviour of pitting corrosion were performed by using design of experiment and artificial neural 

network modelling. 
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3.2. Design of experiment  

3.2.1. Design of experiment modelling – Ecorr 

Model obtained from DOE defines dependency of temperature, pH value and chloride 

concentration and their interactions on corrosion potential. Significance of model was approved by F-

test. Significant parameters obtained in model are: A, B, C, AB, AC, B2, A2B and A3, where A is 

parameter of temperature, B is parameter of pH value and C is parameter of Cl
-
 concentration.  

The model given by Eq. (6) defines impact of temperature, pH value, chloride concentration 

and their interactions on corrosion potential. 

 

 

(6) 

 

Where, A is temperature parameter in Celsius, B is defined as pH value and C is defined as chloride 

concentration value in ppm. In this case, coefficient of determination amounts 0.9815. Coefficient of 

determination, R
2
, is interpreted as the proportion of the variance in the dependent variable that it is 

predictable from the independent variable. In general, the higher R
2
, the better the model fits data.  

Important impact of temperature and pH value as well as interaction of those two parameters is 

visible. For lower temperatures it is observed that Ecorr is increasing with same increase of pH value 

(Figure 4). This rule in behaviour is valid for temperatures in range between 20 °C and 60 °C.  For 

temperatures higher than 60 °C, Ecorr is increasing for states ranging from 1.5 pH to 5 pH. For pH 

values higher than 5, pitting potential starts to fall. The biggest fall in Ecorr is observed in condition of 

6.5 pH and temperature 80 °C. All experimentally obtained results indicate an active state of AISI 304 

stainless steel in given conditions. 

 

 
Figure 4. Impact of temperature and pH value on Ecorr for Cl

- 
ions concentration of 25 ppm 
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3.2.2. Design of experiment modelling – Epit 

Same results were used to predict appearance of pitting corrosion in different conditions of 

temperature, pH value and chloride concentration. Significance of model was approved by F-test. 

Connection between input parameters and pitting potential are given by Eq. (7). 

 

 

(7) 

 

The coefficent of determination of model from DOE amounts 0.9907.  

 

 

(a) at low Cl
-
 concentration 

 

 
(b) at high Cl

-
concentration 

 

Figure 5. Dependence of Epit on temperature and pH value (a) at low Cl
-
 concentration, (b) at high Cl

-

concentration 
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(a)  

 

 

 
(b) 

 

Figure 6. (a) Dependence of Epit on Cl
-
 concentration and pH value for high temperature, (b) 

Interaction effects of Epit for Cl
-
 200 ppm and temperature 80 °C at different pH values 

 

Figures 5a and 5b shows that temperature and pH values have more impact on the appearance 

of the pitting corrosion than Cl
-
 parameter. With increase of temperature and decrease of pH value, 

either with low or high Cl
-
 concentration, pitting potential almost linearly falls. The same linear 

behaviour of pitting potential in dependence of temperature is noted on AISI 316 L [1, 26, 27] and on 

the same material AISI 304 in [26].  

From the Figures 6a and 6c it is seen that both for low and high Cl
-
 concentration, as well as for 

low and high temperature, Epit values are increasing with increased pH value. The biggest increase is 

reached for high temperature and for case of Cl
-
 200 ppm, and temperature 80.00 °C where Epit for pH 

1.5 equals 340.69 mV/SCE and for pH 6.5 equals 836.78 mV/SCE which is difference of 496.09 

mV/SCE (Figure 6b). For comparison, difference in Epit value for the same Cl
-
 and pH levels but 

different temperature in amount of 20.00 °C equals 302 mV/SCE (Figure 6d). The same observation is 
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noticed in [27] where authors have examine the same material and claim that presence of Cl
-
 ions in 

conditions of lower pH values imply lower pitting potential. 

 

 
(c) 

 

 
(d) 

 

Figure 6. (c) Dependence of Epit on Cl
-
 concentration and pH value for low temperature, (d) 

Interaction effects of Epit for Cl
-
 200 ppm and temperature 20 °C at different pH values 

 

The biggest impact on appearance of pitting corrosion, expressed through pitting potential, Epit, 

have both increases of temperature and pH value.  

 

3.3. Artificial neural network  

After determining the optimum neural network structure, and prior to the process of training, 

the whole dataset of 72 input-output pairs was randomly divided into subsets following the typical 

ratio: 60-20-20 percent. Therefore, training data set contained 44 input-output data pairs (Figure 7), 

and the validation (Figure 8) and testing data sets (Figure 9) 14 data pairs. These figures present the 

measured values of Epit and Ecorr using colour filled marks, and values predicted by neural network 
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with transparent data marks. It can be seen that in all three data sets a good prediction was achieved. 

Detailed error analysis for the training, testing and validation data sets is presented in Table 3, both for 

Epit and Ecorr. 

 

 
 

Figure 7. Measured and ANN predicted Epit and Ecorr in the Learning data set 

 

 
 

Figure 8. Measured and ANN predicted Epit and Ecorr in the Validation data set 
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Figure 9. Measured and ANN predicted Epit and Ecorr in the Testing data set 

 

Table 3. Short statistical analysis of relative errors in predicting Epit and Ecorr for training, validation 

and learning data subsets 

 

Training 

Epit, Rel. error 

ANN 

Min 0.0% 

Ecorr, Rel. error 

ANN 

Min 0.2% 

Max 5.6% Max 11.2% 

Average 2.3% Average 2.0% 

St. dev. 1.4% St. dev. 1.8% 

Validation 

Epit, Rel. error 

ANN 

Min 0.4% 

Ecorr, Rel. error 

ANN 

Min 0.1% 

Max 6.0% Max 8.5% 

Average 3.1% Average 2.6% 

St. dev. 1.8% St. dev. 2.1% 

Testing 

Epit, Rel. error 

ANN 

Min 1.8% 

Ecorr, Rel. error 

ANN 

Min 0.1% 

Max 5.1% Max 10.4% 

Average 3.0% Average 2.8% 

St. dev. 1.0% St. dev. 3.2% 

 

 

 

4. COMPARISON OF TWO MODELS 

Two models for prediction of corrosion and pitting potential were developed. Models are 

intended to predict the occurrence and growth of corrosion in different environmental conditions 

including different temperature, pH value and chloride ions concentration. With aim to predict 
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compatibility between results obtained from two different models, a result comparison was made. The 

comparison included 14 states used for neural network testing. 

 
Figure 10. Analysis of Ecorr difference between values obtained with models and experimental results 

 

Deviations from measured results are given in Figure 10. Maximal deviation of results 

predicted with design of experiment model compared to measured results is 13 mV/SCE in absolute 

terms, obtained in 5
th

 instance, while maximal deviation of results predicted with artificial neural 

network equals 7 mV/SCE, obtained in 4
th

 instance. 

 
Figure 11. Analysis of Epit difference between values obtained with models and experimental results 

 



Int. J. Electrochem. Sci., Vol. 11, 2016 

  

7688 

Coefficients of determination for DOE and ANN Ecorr prediction models equal 0.9815 and 

0.9915 respectively. Developed models show good correlation with measured results.  Deviation of 

both models from measured results are within declared measurement uncertainty, U = 50 mV/SCE. 

Considering the coefficient of determination values and result deviations, which are all within 

measurement uncertainty, U = 50 mV/SCE, it is expected that both models will predict corrosion 

potential equally well considering given environmental conditions.  

Same analysis is made for models developed for prediction of pitting potential (Figure 11). 

Maximal deviation of results predicted with design of experiment model compared to measured 

results in absolute terms equals 41 mV/SCE, while maximal deviation of results predicted with 

artificial neural network equals 55 mV/SCE. Both models show good correlation with experimental 

results with coefficient of determination for DOE being 0.9907 and for ANN 0.9924. 

 

 

 

5. CONCLUSIONS 

(1) From the potentiodynamic anodic cyclic polarization measurements, the corrosion and 

pitting potentials for austenitic AISI 304 stainless steels decrease with the increase in chloride 

concentration and temperature at lower pH values.  

 

(2) Determination coefficients of model obtained with design of experiments for prediction 

corrosion potential equals 0.9815, and determination coefficient of model for prediction pitting 

potential equals 0.9907 which means that good correlation between experimental and predicted data is 

obtained.  

 

(3) The correlation between experimental and predicted Ecorr results with artificial neural 

network equals 0.9915, while the correlation between experimental and predicted Epit results equals 

0.9924. Good correlation between experimental and predicted data has been obtained. 
 

 

(4) Maximal determined deviation between the results obtained with design of experiments 

method and artificial neural network method in Ecorr and Epit equals 9 mV/SCE and 26 mV/SCE 

respectively which is insignificant compared to declared measurement uncertainties.  

 

(5) Improving model for prediction of the corrosion and pitting potential obtained with design 

of experiment can be achieved only by increasing the number of experiments, while the improvement 

of the ANN model is also possible by optimizing the network parameters, for example: number of 

hidden neurones, type of hidden neurones and their transfer functions, learning algorithms, changing 

the ratio of training/ validation/ testing data, or even to do the testing with the same data set that is used 

for validation. In order to reduce overall experimental costs, it would be advisable to try to develop 

prediction models on the data samples that are as small as possible. 
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