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This work report a sensitive and selective anodic stripping method for the simultaneous determination 

of Pb(II) and Cd(II) using (3,10,18,25-tetraoxapentacyclo [25.3.1.1
12,16

.0
4,9.

0
19,24

] 

dotriaconta1(31),4(9),5,7,12(32),13,15,19,21,23,27,29-dodecaene-2,11,17,26-tetrone) macrocyclic 

ester (L). Anodic peak currents were increased from 1.16 to 31.48 µA for Pb(II) and 0.22 to 6.68 µA 

for Cd(II) when the in-situ mercury film electrode was modified with nafion and (L). Moreover, 

potentials separation values for Cd-Pb shift from 150 to 190 mV. Optimal parameters such as: pH; L 

concentration (CL), mercury concentration (CHg), accumulation potential (EACC) and accumulation time 

(tACC) were pH 4.0 for Pb(II) and 5.0 for Cd(II) using phosphate buffer solution (PBS), CL 12.0 mmol 

L
-1

, CHg 28.0 mg L
-1

, EACC -1.0 V and  tACC 60. Detection limits (DoL) were 0.085 and 0.80 µg L
-1

 for 

Pb(II) and Cd(II) respectively. The relative standard deviation (RSD) for seven measurements of Pb(II) 

and Cd(II) 9.0 µg L
-1

 were of 2.5 and 2.0% respectively. The method was validated by ICP multi-

element standard solution IX (Merck) containing As, Be, Cd, Cr(VI), Hg, Ni, Pb, Se and Tl 100 mg L
-

1
. Finally, useful of the modified electrode was developed in the analysis of Pb(II) and Cd(II) using tap 

water samples. 
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1. INTRODUCTION 

Lead and cadmium are classified as hazardous metals by the Agency for Toxic Substances and 

Disease Registry (ATSDR). The excessive presence of these metals in the environment is very harmful 

to humans, animals and plants [1]. In addition, are considered the oldest contaminants of natural 
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waters. It has been reported that their interactions with bio-elements in living organisms can cause 

irreparable damage to the DNA [2].  

On the other hand, in extreme cases lead poisoning leads to health problems such as anemia, 

renal dysfunction, and reduced intelligence quotient levels in children [3,4], whereas cadmium 

produces nausea and vomit and as result its prolonged exposure toxaemia in the liver, emphysema in 

the lungs, proteinuria and hypertension [5,6]. Therefore, the need arises to develop new methodologies 

sensitive that allowing identification and quantification of lead and cadmium in natural waters. The 

electroanalytical techniques offer great advantage, related with the sensitivity and the low operational 

cost. Anodic tripping voltammetry (ASV) has proved to be very convenient for the determination of 

lead and cadmium, this is demonstrated in the amount of work published in the last decade using 

mercury film electrodes (HgFE) and handing mercury drop electrode (HMDE). The use ligands as 

chelating-adsorbent agents to forming ions-complexes with metals ions can improve the sensibility and 

selectivity for ASV [7,8]. These chelating-adsorbent agents must forms complexes of fast kinetics. 

Some of the ligands used as chelating-adsorbent agents in the simultaneous determination of lead and 

cadmium are Clioquinol [9], 2-mercaptobenzothiazole [10], 8-hydroxyquinoline [8], 4-methylcatechol 

[11], uric acid [12] and pirogallol red [13]. Where have reported detection limits (DoL) between 0.05-

17.0 µg L
-1

 for lead and 0.01-10 µg L
-1

 for cadmium. In this reports, complexes were formed in 

dissolution. Moreover, Pb(II) and Cd(II) were detected by adsorptive stripping voltammetry. 

Macrocyclic molecules, such as ether crown, has been used in the determination of Pb(II) and Cd(II) 

by anodic stripping voltammetry, where proven to be sensibility and selective [14-17]. 

Dichloromethane coated with macrocyclic ester (L) on glassy carbon electrode was used in the 

determination of Pb(II) with detection limit of 0.33 μg L
-1 

[18]. In-situ mercury film nafion coated 

macrocyclic (L) on glassy carbon electrode for simultaneous detection of Pb(II) and Cd(II) not has 

been reported. 

 

 

 

2. EXPERIMENTAL 

2.1. Reagents and instruments 

Water required for the preparation of dissolutions was obtained from Purifier System Wasselab 

ASTM D1193. Standard solutions of Cd(II), Pb(II) and Hg(II) were prepared of standards solution 

Merck (Darmstadt, Germany). Nafion® (5%w/v solution in a mixture of water and lower alcohols) 

were purchased from Aldric. Macrocyclic ester (L) Fig. 1, was synthesized as was reported by Hurtado 

et al [18]. All other chemicals such as nitric acid, methanol, phosphoric acid etc. were analytical grade 

from Merck. Buffer phosphate solution (PBS) (0.1 mol L
−1

) was prepared from H3PO4/H2PO4
-
 

adjusting to the required pH with NaOH solution. ICP multi-element standard solution IX (Merck) 

containing As, Be, Cd, Cr(VI), Hg, Ni, Pb, Se and Tl (100 mg L
-1)

 was used for interferences study. 

Square wave anodic stripping voltammograms (SWASV´s) were obtained using a potentiostat 

DropSens µStat 400. Glassy carbon electrodes of diameter (3 mm) was used as working electrode. 
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Reference electrode was an Ag/AgCl/KCl 3 mol L
−1

 and auxiliary electrode was a platinum wire. pH 

was measured with an Ohaus model ST 3100 pH meter. 

 

 
 

Figure 1. Structure of the macrocyclic ester (L) 

 

2.2. General measure procedure 

10.0 mL of ultra-pure water or 9.0 mL with 1.0 ml of sample; Hg (300 µL, 28.0 mmol L
-1

), 

PBS (300 μL, 0.01 mol L
−1

) and aliquots (10-100 µL) of Pb(II) and Cd(II) (1.0 mg L
−1

) were 

pipetted into the voltammetry cell. Then, pre-concentration step was initiated for an optimal potential 

and time at a stirring speed of 500 rpm. After an equilibration time of 3 s, SWASV´s were recorded, 

while the potential was scanned from -1.0 to 0.0 V using square wave modulation with 10 mV step 

amplitude, 100 mV pulse amplitude, and a frequency of 25 Hz. Each voltammograms was repeated 

three times. The calibration curves were obtained and linear regression and detection limits (DoL) 

were calculated from DL= 3Sx/y/b, where Sx/y is the random error in x and y, and b is the slope [19].  

 

2.3. Sample preparation 

Tap water was obtained from our laboratory. The samples were collected in high-density 

polyethylene bottles, which had been acid-washed and rinsed with water. Samples were stored frozen 

before analysis. The samples needed no treatment to remove organic matter. To eliminate matrix 

effects the standard addition method was used. All data were obtained at room temperature (≈25 °C). 

 

2.4. Preparation of in-situ mercury film glassy carbon coated nafion and L electrode  

(in-situ HgF-N-L/GCE) 

Before the measurements, the glassy carbon electrode was polished using a polishing pad with 

0.05 and 0.3 μm Al2O3 slurry, rinsed with water and submitted by 5 minutes in bath of ultra sound in a 

solution 1/1 of HNO3 (0.3 mol L
−1

) and ethanol. 3.0 mg of macrocyclic (L) was dispersed in 0.50 mL 

of Nafion
®
. 30 µL of composite N-L was deposited on the electrode freshly polished. The solvents 

were left to evaporate at room temperature. The nafion coated with L glassy carbon electrode (N-

L/GCE) and modified with mercury film was prepared in-situ. The electrode was immersed in an 
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electroanalytical cell containing the plating solution of Hg(II) (30 mg L
−1

), and the mercury film was 

formed by holding the working electrode potential at −1.0 V for 60 s. It was not necessary to eliminate 

the excess of oxygen in the cell. The entire study was performed with 10 mL of dissolution of mercury. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Anodic stripping property of Pb(II) and Cd(II) on in-situ HgF-N-L/GCE . 

Preliminary, experiments were conducted to identify the properties and anodic behavior of 

Pb(II) and Cd (II) on the modified electrode (in-situ HgF-N-L/GCE) by square wave anodic stripping 

voltammetry (SWASV). Fig. 2A shows the SWAdSV’s responses of Pb(II) and Cd(II) 9.0 µg L
-1

 using 

GCE (black curve) and mercury film (red curve). Using in-situ mercury film were seen tow well 

defined anodic peak currents for Pb(II) and Cd(II) at −0.50 V and -0.65 V with separation potential for 

Pb-Cd of 150 mV. When Gassy carbon was coated with nafion (in-situ HgF-N/GCE) Fig 2B (black 

curve), anodic peak current shift at -0.61 and -0.78 V for Pb(II) and Cd(II) respectively. The signal to 

Cd(II) was much smaller. Moreover, when in-situ HgF-N/GCE was modified with L Fig 2B (red 

curve), anodic peak currents for Pb(II) and Cd(II) were increased more than 50%.  

On the other hand, anodic peak potentials of Pb(II) and Cd (II) change to less positive potential 

values, requiring less energy to oxidation compared with the electrodes without nafion and L. These 

changes in the anodic signals can confirms that the complexes have been formed on the surface of the 

electrode between Pb(II), Cd(II) and L. Using other macrocyclic substances; such as crown ethers, 

were observed similar potential values for Pb(II) and Cd(II) [14, 20]. 

 

 
 

Figure. 2. (A) Anodic stripping voltammograms of Pb(II) and Cd(II) solution using GCE (black curve) 

and in-situ HgF/GCE (red curve). (B) in-situ HgF-N/GCE (black curve) and in-situ HgF-N-

L/GCE (red curve). Conditions: pH 4.0; CPb(II), CCd(II) 9.0.0 μg L
−1

; CL 10.0; mmol L
-1

; CHg 30.0 

mg L
-1

; EACC -1.0 V; tACC 60 s. Step amplitude 10 mV; pulse amplitude 100 mV and frequency 

25 Hz. 
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3.2. Anodic stripping property for Pb(II) and Cd(II) using in-situ HgF-N-L/GCE in function  

of CL and CHg. 

With the aim of using minimal amounts of (L) and dissolution of Hg(II) without affecting the 

sensitivity, were studied the concentration of L and Hg(II) in the preparation of the electrode in 

relation to the height of the oxidation currents with Pb(II) and Cd(II) 9.0 gµ L
-1 

using in-situ HgF-N-

L/GCE. Fig. 3A shows the anodic peak currents vs CL. Result showed that anodic peak currents for 

Pb(II) and Cd(II) were increased to 12 mmol L
-1

 of (L). At higher concentrations, anodic peak currents 

for Pb(II) and Cd(II) decreases. Possibly, electrode surface is saturated affecting the oxidation of Pb(II) 

and Cd(II) in the complex. Moreover, with 28.0 mg L
-1

 de Hg(II) solution was observed highest anodic 

peak currents for Pb(II) and Cd(II). At higher concentrations, the anodic peak currents were constant. 

Based on these results, 12.0 mmol L
-1

 of (L) and 28.0 mg L
-1 

were used for further experiments. 

 

 
 

Figure 3. (A) Influence of CL on the peak current of Pb(II) and Cd(II). (B) Influence of CHg on the 

peak current of the Pb(II) and Cd(II). Conditions: pH 4.0; CPb(II), CCd(II) 9.0 μg L
−1

; EACC -1.0 V; 

tads 60 s. Others conditions as in Fig. 2. 

 

3.3. Study in function of pH 

The variation of the anodic peak currents for Pb(II) and Cd(II) as a function of pH was studied 

in pH range 3.0-7.0 (Fig. 4) using in-situ HgF-N-L/GCE with BPS. The experimental conditions were: 

Pb(II) and Cd(II); 9.0 µg L
-1

, CL; 12.0 mmol L
−1

; CHg; 28.0 mg L
-1

, EACC -1.0 V and tACC 60 s.  Anodic 

peak currents were highest at pH 4.0 for Pb(II) and pH 5.0 for Cd(II) (Fig 4). At higher pH values, an 

anodic peak current decreases. Possibly, Pb(II) and Cd(II) form complexes with OH
- 

to pH values 

greater. pH 4.0 and 5.0 for both metal were used for further experiments.  

 

3.4. Influence of EACC and tACC. 

The effect of accumulation potential (EACC) on the anodic peak currents for Pb(II) and Cd(II) 

using in-situ HgF-N-L/GCE were studied over the -1.2 to -0.7 V range with Pb(II) and Cd(II) 9.0 μg 

L
−1

. 
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Figure 4. Influence of pH on the peak current of Pb(II) and Cd(II). Conditions: CPb(II), CCd(II) 9.0 μg 

L
−1

; CL 12.0 mmol L
–1

; CHg 28.0 mg L
-1

; EACC –1.0 V; tACC 60 s. Others conditions as in Fig. 2. 

 

The anodic peak currents of Pb(II) and Cd(II) were maximum to -1.0 V. However, the stability 

of the modified electrode was high. On this basis, an EACCC of -1.0 V was chosen for further studies. 

Another parameter studied was the accumulation time (tACC), examined between 10–100 s. Anodic 

peak currents for Pb(II) and Cd(II) increased almost linearly with accumulation time until 60 s, and 

then tended to a constant. 60 s was used for further studies. 

 

3.5. Effect of instrumental variables; frequency (Hz), step potential (mV) and amplitude pulse (mV). 

These instrumental parameters are related to the step of stripping where Pb(II) and Cd(II) are 

oxidized. The instrumental parameters studied were frequency, step amplitude and pulse amplitude. 

Anodic peak currents increased as all the parameters increased. However, when the frequency was 

higher than 25 Hz the signal of Pb(II) and Cd(II) were very broad, losing resolution. Step amplitude of 

10 mV and pulse amplitude of 100 mV at a frequency of 25 Hz were selected for further experiments. 

 

3.6. Detection limit (DoL) and reproducibility (% RSD) of the method 

Analytical parameters (LoD and %RSD) using in-situ HgF-N-L/GCE with optimal conditions 

(CL 12.0 mmol L
-1

; CHg; 28.0 mg L
-1

 EACC;-1.0 V; tACC of 60 s and pH 4.0 for Pb(II) and pH 5.0 for 

Cd(II) (PBS 0.01 mol L
-1

), stirring rate 500 rpm; step amplitude 10 mV; 100 mV, and frequency 15 Hz 

were studied. Under these conditions the anodic peak currents were proportional between 0.40–30.0 µg 

L
-1

 for Pb(II) Fig 5A and 1.8-25.0 µg L
-1

 for Cd(II) Fig. 5B. Detection limit (3Sx/y/b) were of 0.085 and 

0.80 µg L
–1

 for Pb(II) and Cd(II) respectively. The relative standard deviations were 2.5% and 2.0% 

for Pb(II) and Cd(II) respectively, (n=7) for solutions containing Pb(II) and Cd(II) 9.0 µg L
–1

. The 

results obtained were equally acceptable to the shown in Table 1. Where used other ligands and 

different electrodes such as, bismuth and antimony film. Compare the results according to the 

sensitivity with other substances, such as; 4-carboxybenzo-18-crown-6 and 4-carboxybenzo-15-crown-
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5 [14, 17], the modified electrode reached a greater sensitivity and potential separation Cd-Pb was 

higher. Moreover, the modification was more simple. 

 
 

Figure 5. (A) Influence of CPb on the peak currents in the presence of Cd(II) 5.0 µgL
-1 

(insert 

calibration curve). (B) Influence of CCd on the peak current in the presence of Pb(II) 5.0 µgL
-1 

(insert calibration curve). Conditions: pH 4.0 for Pb(II) and pH 5.0 for Cd(II); EACC -1.0 V; tads 

60 s. Others conditions as in Fig. 2. 

 

3.7 Validation of the method and interference study. 

The accuracy and interferences of the present method was evaluated in the determination of 

Pb(II) and Cd(II) using ICP multi-element standard solution IX (Merck) containing As, Be, Cd, 

Cr(VI), Hg, Ni, Pb, Se and Tl 100 mg L
-1

. The standard solution of 100 mg L
-1 

were prepared two 

dilutions of 1.0 mg L
-1

 to be analyzed. In the electrochemical cell (10.6 mL) were added 60 and 120 

µL of the standard dissolution 1.0 mg L
-1

. Concentrations in the dissolution were 5.62 and 11.51 µg L
-

1
. 

 
 

 

Table 1. Detection limits for lead and cadmium with others ligands and electrodes. 

 

Technique  Electrode  Ligand  DoL (µg L
-1

) References 

Pb (II)  Cd(II)  

AdSV Carbon paste diacetyldioxine 2.07 4.48 [21] 

AdSV HMDE 2-mercaptobenzothiazole 0.017 0.01 [10] 

AdSV HMDE 3-aminophthalhydrazine - 0.02 [22] 

ASV OHp/IL - 0.041 0.056 [23] 

AdSV N-HgF Clioquinol 0.10 0.06 [9] 

AdSV HMDE Morin 0.08 - [24] 

AdSV N-BiF 1-nitroso-2-naphthol 0.08 0.07 [25] 

ASV BiF-SPC - 0,14 0,24 [26] 

ASV 

ASV 

SbF-SPC 

N-L-HgF/GCE 

- 

- 

5.0 

0.08 

3.0 

0.1 

[27] 

This work 
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AdSV: Adsorptive stripping voltammetry; ASV: Anodic stripping voltammetry; HMDE: Handing 

mercury drop electrode; OHp: Hydroxypatite;  IL: Ionic liquids; N-HgF; nafion mercury film; N-BiF: 

nafion bismuth film; SbF: antimony film; SPC: screen printed carbon. 

 
 

Figure 6. SWASV´s and calibration curve (insert) of standard solution 11.51 µg L
-1

 using in-situ HgF-

N-L/GCE. Conditions: pH 5.0; CL 12.0 mmol L
–1

; CHg 28.0 mg L
–1

EACC -1.0 V; tACC 60 

s.Others conditions as in Fig. 2. 

 

Anodic Voltammograms and the calibration curve for standard solution 1 are shown in Fig. 6. 

The value obtained for standard 1 were 6.8 µg L
–1

 (RE 21.0%) for Pb (II) and 4.5 µg L
–1

 for Cd(II) 

(RE -19.0%) and the values obtained for standard 2 were 12.58 µg L
–1

 (RE 9.0 %) for Pb(II) and 9.7 

µg L
–1

 for Cd(II) (RE -15.7%). These values are satisfactory because the tested water contains others 

metal ions (Co, Cu, Mo, Zn and Ni). Moreover, Co, Cu, Mo, Zn and Ni, do not cause interference with 

the signals of Pb(II) and Cd(II) up to 100 times higher concentrations.  

 

3.8. Real samples analysis 

The proposed in-situ HgF-N-L/GCE was applied for the determination of Pb(II) and Cd(II) in 

tap waters without previously treatment. The results are summarized in Table 2.  

 

Table 2. Detection of Pb(II) and Cd(II) in tap water 

 

Tap water 

samples 

Added (µg L
-1

) Found (µg L
-1

) % Relative 

error 

 Pb(II) Cd(II) Pb(II) Cd(II) Pb(II) Cd(II) 

1 - 4.6 2.1 4.0 - 13.0 

2 - 9.0 1.7 6.5 - 27.0 

3 - 4.6 3.0 3.4 - 26.0 
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Cd(II) was not detected in any of these samples. Possibly, the concentration of Cd(II) was 

below the detection limit. The amounts detected of Pb(II) were below 5.0 µg L
-1

, which is the allowed 

range for human consumption. 

 

4. CONCLUSIONS  

This work reports the simultaneous trace determination of Pb(II) and Cd(II) in the presence of 

macrocyclic ester (L). The presence of L allowed the increases of the anodic peak currents for Pb(II) 

and Cd(II) more than 50%. Therefore, proposed method was more sensibility. The analysis time was 

significantly reduced by that is not necessary to the pretreatment of the samples and the time of each 

measurement was of 60 s. 
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