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La-based Perovskite-type oxides with composition La1-xCuxCoO3 (0 ≤ X ≤ 0.8) have been synthesized 

by malic acid sol-gel low temperature route at pH 3.75. In each preparation, nitrate salts of lanthanum, 

copper, cobalt and malic acid were taken as starting material. The pH of the solution was adjusted by 

using ammonia solution. Techniques used to know the physical properties of the materials were 

scanning electron microscope (SEM) powder X-ray diffraction (XRD). All the electrochemical viza 

cyclic voltammetry, roughness factor and anodic polarization studies have been performed in three 

electrode single compartment glass cell. For the purpose, materials were transferred in the form of 

oxide film electrode on Ni conducting support. XRD data showed the formation of almost pure phase 

of the material with hexagonal crystal geometry. The cyclic voltammetric study showed that each 

oxide electrode exhibited a pair of redox peaks prior to the oxygen evolution reaction (OER). The 

values of Tafel slope (78-90 mV decade
-1

) and reaction order (~ 1) indicate that each catalyst follows 

similar mechanistic path. The data of anodic polarization study shows that the substitution of Cu in 

place of La in the base oxide increases the electrocatalytic activity considerably. The value was found 

to be highest with 0.4 mol Cu substitution. Electrochemically active area of the material was 

determined in terms of roughness factor by recording the cyclic voltammograms at different scan rates 

in the potential region 0.0-0.1V. The roughness factor was observed to be highest with 0.2 mol Cu-

substituted oxide. 

 

 

Keywords: Perovskite-type oxide, malic acid sol-gel, XRD, Electrocatalytic activity, Thermodynamic 

parameters, roughness factor 

 

1. INTRODUCTION 

The day-to-day increase in the global energy demand and environmental pollution created by 
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fossil fuels (coal, petroleum, etc.) has a great task to researchers for the development of clean and 

sustainable energy conversion and storage systems [1,2]. Due to sluggish kinetics of both oxygen 

reduction reaction (ORR) and oxygen evolution reaction (OER), the investigations of efficient 

electrocatalysts has been a topic of importance during last few decades for the development of new 

generation of energy technologies like fuel cells, metal air batteries, hydrogen production from water 

and solar fuel synthesis [3-7]. Consequently, great efforts have been devoted and produced 

electrocatalysts which are mainly based on pure metal, metal oxides, mixed metal oxides having spinel 

and perovskite structure and studied intensively [8]. The perovskite-type oxides of lanthanum are 

found to be very promising materials towards active electrocatalysts in many technological reactions 

like electrolytic evolution (reduction) of oxygen [9-13], the oxidation of CO and hydrocarbon and the 

reduction of nitrogen oxides [14]. It is also well known that the electrocatalytic properties of the 

material are strongly influenced by the preparation methods, temperature, metal ion substitution and 

pH of the precursor solution. The literature showed that high temperature methods, like ceramic and 

thermal decomposition [15-20] produced oxides with low specific surface area and hence very low 

electrocatalytic properties.  

In order to improve the physicochemical and electrocatalytic properties of the materials, some 

low temperature synthetic routes [21-25] based on amorphous organic acids (malic, citric, steric, 

polyacrylic acid), hydroxide and cyanide solid solutions etc. have been adopted by the researchers. By 

using these low temperature synthetic routes, Singh et al. [9, 26-36] reported an improved 

electrocatalytic properties of pure and substituted Co, Mn and Ni-based lanthanum perovskite with 

regards to oxygen evolution reaction in alkaline medium. Very recently [37-41], some La-based 

perovskite-type oxides have been reported as electrocatalysts for oxygen evolution as well as oxygen 

reduction. Singh et al [32] studied the electrocatalytic properties Sr-substituted LaMnO3 obtained by 

low temperature malic acid sol-gel route [21] at pH = 3.5 and found very good electrocatalytic activity 

for oxygen evolution in alkaline medium. In view of above, we produced Cu-substituted lanthanum 

cobaltates by using the similar synthetic procedure [21, 32] at pH = 3.75 and studied their 

physicochemical and electrocatalytic properties with regards to oxygen evolution reaction in alkaline 

medium. Results, so obtained, are described in this paper.  

 

 

2. EXPERIMENTAL 

Perovskite-type oxides of La, Cu and Co having composition LaCoO3, La0.8Cu0.2CoO3, 

La0.6Cu0.4CoO3, La0.4Cu0.6CoO3, and La0.2Cu0.8CoO3 were prepared by low temperature malic acid sol-

gel route [21]. Chemical and reagents used in each preparation were purified and analytical grade and 

purchased from Merck and Qualigens. The required amounts of metals nitrate as per stoichiometric 

ratio of the composition of oxide material were weighed and dissolved in 500 ml double distilled 

water. An excess amount of malic acid was added to this solution. The pH of the solution was 

maintained to 3.75 by using 28% ammonia solution. The solution was then concentrated on water bath 

at temperature about 80°C. A gel like mass obtained was decomposed at higher temperature. Further, 
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the material was crushed into agate pastel mortar to get the fine powder, which was finally sintered at 

650 C for 5 hr in a PID controlled electrical furnace (ASCO, India) to obtain the desired oxide.  

X-ray diffraction pattern (XRD) was recorded to confirm the perovskite phase of the material 

using XPERT-PRO Diffractometer (Model PW3050/60; Radiation Source: Cu-K;  = 1.54048 Å). 

The morphology of the oxide film on Ni was examined by scanning electron microscope (JOEL JSM 

6490LV). For electrochemical characterization, oxide powder was transformed in the form of film 

electrode on Ni-support by adopting oxide slurry painting technique. For the purpose, slurry of the 

oxide powder was prepared with few drops of non-ionic detergent Triton X-100. This slurry was then 

painted to one side of the pre-treated Ni plate (area = 1.5 cm
2
) and subsequently heat treated at 380 C 

for 1½ hr. The process was repeated 2-3 times to obtain the desired loading on the conducting support. 

The electrical contact with the oxide film was made by using copper wire, silver paste and Araldite 

epoxy. The treatment of Ni-support and electrical connection with the oxide film to form the oxide 

film electrode were done in the same way as described earlier [26, 31]. All the electrochemical studies 

such as cyclic voltammetry, double layer capacitance and anodic polarization curve were performed in 

a three electrode single compartment glass cell using an electrochemical work station (Gamry 

Reference 600 ZRA) provided with potentiostat/galvanostat. Two software, corrosion and physical 

electrochemistry were used for electrochemical studies and data were recorded on the desktop 

computer (HP). A platinum foil (~2 cm
2
) and Hg/HgO/1M KOH (E° = 0.098 V vs NHE at 25°C) were 

taken as auxiliary and reference electrode, respectively. The working electrode was the oxide film 

electrode. A Luggin capillary (agar-agar and potassium chloride gel) was employed to make the 

connection between working and reference electrode. This arrangement was done to minimize the 

solution resistance (iR drop) between the working and reference electrode. The formal overpotential 

values mentioned in the data were obtained by the relation, , where E and  (= 

0.303 V vs. Hg/HgO) [42] are the applied potential across the catalyst/ 1 M KOH interface and the 

theoretical equilibrium Nernst potential in 1 M KOH at 25 °C, respectively. 

 

 

 

3. RESULT AND DISCUSSION 

3.1 Physicochemical Properties 

3.1.1 Scanning Electron Micrograph (SEM) 

SE-micrographs of pure and Cu substituted LaCoO3 sintered (at 650°C) oxide film on Ni 

support is shown in Fig. 1(a-e) at magnification ×500. From figure it is observed that morphology of 

each oxide film was found to be almost similar regardless of the Cu-substitution in the base oxide.  
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Figure 1. SE Micrographs of oxide film on Ni-support; a: LaCoO3, b: La0.8Cu0.2CoO3,                           

c: La0.6Cu0.4CoO3, d: La0.4Cu0.6CoO3, e: La0.2Cu0.8CoO3 

 

The appearance of the oxide film is found to be compact and homogeneous throughout. Some 

small cracks are also observed in the oxide film. 

 

3.1.2 X-ray diffraction (XRD) 

The powder XRD pattern of LaCoO3 and its 0.4 mol Cu-substituted oxide material (sintered at 

650°C for 5 hr) was taken in 2θ range 20° to 80° using a Philips X-ray Diffractometer having Cu-Kα 

(λ= 1.54184 Å) as a radiation source. The spectra, so obtained, are represented in Fig. 2. The 2θ and 

the corresponding ‘d’ values of the diffraction lines as shown in Fig. 2 were found to be best match 

with JCPDS ASTM file 25-1060 for LaCoO3 and followed hexagonal crystal geometry.  

a b 

c d 

e 

Mag = 500 X Mag = 500 X 

Mag = 500 X 

Mag = 500 X Mag = 500 X 
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The crystallite size of the material was calculated by using the Scherer’s formula [43]
 
and 

found to be 32, 24 nm, respectively with x = 0 and 0.4 mol Cu-substituted oxides.  
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Figure 2. X-ray diffraction patterns of La1-xCuxCoO3, sintered at 650°C for 5 h; (a) x = 0 mol   

    (b) x = 0.4 mol 

 

3.2. Electrochemical properties 

3.2.1. Cyclic Voltammetry (CV) 

Cyclic voltammograms of the synthesized oxide film electrodes, recorded between the potential 

window 0.0-0.7V at the scan rate of 20 mVsec
-1

 at 25 °C in 1 M KOH solution, are shown in Fig. 3. 

Nature and characteristics of the voltammograms of each oxide electrode material appeared to be 

similar.  

 

 

 

Figure 3. Cyclic voltammograms of pure and Cu-substituted film electrode on Ni at scan rate of 20 

mV/sec in 1M KOH (25°C); a: LaCoO3, b: La0.8Cu0.2CoO3, c: La0.6Cu 0.4CoO3, d: La0.4Cu 

0.6CoO3, e: La0.2Cu 0.8CoO3. 
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Each curve shows two redox peaks, an anodic and corresponding cathodic one. Values of peak 

potentials (EPa & EPc), peak separation potential (ΔEP = EPa - EPc) and formal redox potential {E° = 

(EPa - EPc)/2} are listed in Table 1. 

The anodic peaks (EPa = 56644 mV) and their corresponding cathodic peaks (EPc = 30616 

mV), prior to the onset of oxygen evolution reaction, were found to be very similar to that observed in 

literature [26, 31, 44]. Values of the anodic and cathodic peak potential (EPa  490 mV and EPc  380 

mV) in 1 M KOH for bare Ni [45] indicate that the redox peaks observed for the oxide electrodes 

result from the Ni substrate which might come in contact with the electrolyte during cycling process. 

Also, oxides prepared at low temperature undergo hydration [46] easily in solution and electrolyte may 

come in contact with the substrate through pores, cracks and grain boundaries.  
 

Table 1. Values of the Cyclic Voltammetric parameters of Ni/ La1-xCuxCoO3 (0 ≤ X ≤ 0.8) in 1 M 

KOH at 25 °C (scan rate = 20 mV sec
-1

). 

 

Electrode EPa / mV EPc / mV ∆Ep / mV E°= (EPa+EPc) / 

2 / mV 

LaCoO3 532 322 210 427 

La0.8Cu0.2CoO3 523 296 227 409 

La0.6Cu 0.4CoO3 610 294 316 452 

La0.4Cu 0.6CoO3 523 321 202 422 

La0.2Cu 0.8CoO3 553 289 264 421 

 

The cyclic voltammetric curves were also recorded at varying scan rates of 20, 40, 60, 80, 100 

and 120 mV sec
-1

 in 1M KOH at 25C in the potential region 0.0-0.7V. A representative cyclic 

voltammogram for 0.8 mol Cu-substituted electrocatalysts is shown in the Fig. 4.  

 

 

 

Figure 4. Cyclic voltammograms of the Ni/La0.2Cu0.8CoO3 film electrode at different scan rates in 1M 

KOH (25°C). 
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The estimated voltammetric parameters are shown in the Table 2 for base and 0.8 mol Cu-

substituted oxide. The nature of CV curve observed at different scan rates was found to be similar to 

that observed at scan rate of 20 mV sec
 -1

. But, both anodic and cathodic peaks shifted either side with 

the variation of scan rate between 20 to 120 mV sec
-1

. This indicates the quasireversible nature of the 

redox process. The observed shift in the anodic and the cathodic peak potentials were found to be 132-

156 mV and 33-94 mV towards positive and negative directions, respectively. The scan rate also 

influenced the anodic and cathodic peak currents.  It increases both anodic and cathodic peak current 

values linearly with increase in the scan rates and ratio anodic and cathodic peak current was found to 

be more than unity. This indicates that redox process is irreversible. 
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Figure 5. Plot of voltammetric charge (q) vs (scan rate)
-1/2 

for La1-xCuxCoO3 (0 ≤ x ≤ 0.8) films on Ni 

in 1M KOH (25°C). 

 

Table 2. Cyclic Voltammetric parameters for the La1-xCuxCoO3 (x = 0 and 0.8) film electrode on Ni in 

1 M KOH at 25°C. 

 

Scan 

rate 

/mVsec
-1

 

EPa 

/mV 

EPc 

/mV 

∆E =  

EPa - EPc  

/mV 

E° = 

(EPa + 

EPc)/2  

/ mV 

|jPa| 

/mA 

cm
-2

 

|jPc| 

/mA 

cm
-2

 

|jPa| /  

|jPc| 

q /mC 

cm
-2

 

20 553 

(532) 

289 

(322) 

264 

(210) 

421 

(427) 

70.2 

(13.7) 

60.1 

(9.2) 

1.3 

(1.5) 

1198.9 

(117.0) 

40 600 

(561) 

259 

(310) 

341 

(251) 

429 

(435) 

103.1 

(21.5) 

81.2 

(13.8) 

1.3 

(1.5) 

975.8 

(101.4) 

60 641 

(588) 

238 

(303) 

403 

(285) 

440 

(445) 

127.3 

(28.9) 

97.9 

(17.6) 

1.3 

(1.6) 

792.0 

(93.2) 

80 665 

(618) 

221 

(295) 

444 

(323) 

443 

(456) 

147.4 

(35.0) 

110.7 

(20.7) 

1.3 

(1.7) 

661.0 

(87.2) 

100 681 

(645) 

205 

(296) 

476 

(349) 

443 

(471) 

164.1 

(41.9) 

120.5 

(23.4) 

1.4 

(1.8) 

562.7 

(82.7) 

120 687 

(666) 

195 

(289) 

492 

(377) 

441 

(477) 

176.0 

(48.8) 

128.5 

(26.0) 

1.4 

(1.9) 

491.3 

(76.3) 

(Values given in parenthesis correspond to LaCoO3) 
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3.2.2. Roughness Factor (RF) 

Electrochemically active area of oxide materials was determined by recording the CV curves in 

the potential window 0.0 to 0.1 V at varying scan rates of 20, 40, 60, 80, 100 and 120 mV Sec
-1

. A 

representative curve is shown in Fig. 6 for La0.2Cu0.8CoO3 electrode. Values of capacitive current (jcap) 

were estimated at the middle (50 mV) of the CV curve at each scan. A plot was constructed between 

current and scan arte (Fig. 7).  

 

 
 

Figure 6. Cyclic voltammograms for Ni/La0.2Cu0.8CoO3 electrode in the potential region 0.0-0.1 V in 1 

M KOH (25°C), 
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Figure 7. Plot of capacitive current density (jcap) vs. scan rate for La1-xCuxCoO3 (0 ≤ x ≤ 0.8) in 1 M 

KOH (at 25°C) 

 

The slope of the straight line gives the value of capacitance double layer (Cdl). The 

corresponding roughness factor was calculated by assuming the double layer capacitance of the smooth 

oxide surface 60 µF cm
-2

 [47] and the values, so obtained, is given in Table 3. From table 3, it is 
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observed that oxide roughness factor has no any trend with Cu-substitution in the base oxide. It was 

found to be maximum with 0.2 mol Cu-substitution and minimum with base oxide. 

 

3.2.3 Electrocatalytic activity 

The iR compensated anodic polarization curves (E vs.log j ) recorded at a scan rate of 0.2 mV 

sec
-1

 for pure and copper doped perovskite film electrode on Ni in 1M KOH at 25 °C is represented in 

Fig. 8. To compare the electrocatalytic activities of electrodes, the observed values of Tafel slope (b) 

and current density at two overpotentials (347 & 447 mV) as well as overpotential at three different 

current density (10, 100 and 300 mAcm
-2

) are given in Table 3. Nature of the polarization curve for 

each oxide electrode was similar with almost same Tafel slope ranged between 78-90 mV decade
-1

. 

 

 

 

Figure 8. Tafel plots for the pure and Cu-substituted LaCoO3 film electrode on Ni in 1M KOH (25°C); 

scan rate: 0.2mVsec
-1

; a: LaCoO3, b: La0.8Cu0.2CoO3, c: La0.4Cu0.6CoO3, d: La0.2Cu0.8CoO3,        

e: La0.6Cu0.4CoO3 

 

 

 

Figure 9. Tafel plot for the La0.6Cu0.4CoO3 film electrode on Ni in varying KOH concentrations ( = 

1.5) at 25°C. 
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To determine the order of electrochemical reaction, the polarization curves were recorded in 

varying KOH concentrations (0.25-1.5M) at 25 °C. The ionic strength (μ = 1.5) of the solution was 

kept by using inert electrolyte KNO3. A representative curve for La0.6Cu0.4CoO3 is shown in the Fig. 9. 

The nature of anodic polarization curves at varying KOH concentration was similar for each oxide 

electrode studied.  The plot log j vs. log [OH
-
], as shown in the Fig. 10 for La0.6Cu0.4CoO3 was 

constructed at different applied potentials. The order of reaction was calculated by measuring the slope 

of the plot. Values of the order of reaction were found to be almost unity in each case and are given the 

Table 3. 
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Figure 10. Plot of log j vs log [OH
-
] at a different applied potential for La0.6Cu0.4CoO3 film electrode 

on Ni at 25°C. 

 

Table 3.  Electrode kinetic parameters for oxygen evolution reaction on La1-xCuxCoO3 (0 ≤ x ≤ 0.8) 

electrodes in 1 M KOH at 25°C 

 

Electrode Tafel 

slope / 

mVd
-1

 

Roughne

ss Factor 

(RF) 

Order 

(p) 

/ mV at ja (mA cm
-2

) ja (mA cm
-2

) 

at / mV 

10 100 300 347 447 

LaCoO3 78 176 ~1 364 571 901 7.0 39.9 

La0.8Cu0.2CoO3 80 1244 ~1 345 541 839 10.3 49.2 

La0.6Cu0.4CoO3 90 291 ~1 268 431 648 44.5 111.6 

La0.4Cu0.6CoO3 88 818 ~1 333 519 780 14.3 59.3 

La0.2Cu0.8CoO3 90 671 ~1 297 479 715 27.7 70.2 

 

Among the oxide film electrodes prepared by this method at pH = 3.75, it has been found that 

the La0.6Cu0.4CoO3 is the electrocatalytically most active, while the base is the least active.  This 

indicates that the Cu-substitution increased the oxide electrocatalytic activity considerably. Based on 

the apparent current density data at constant overpotential ( = 447mV), the different electrocatalysts 

show the order as: 
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La0.6Cu0.4CoO3 (ja= 111.2 mAcm
-2

) > La0.2Cu0.8CoO3 (ja= 70.2 mAcm
-2

) > La0.4Cu0.6CoO3 (ja= 

59.2 mAcm
-2

) > La0.8Cu0.2CoO3  (ja= 49.2 mAcm
-2

) > LaCoO3  (ja= 39.9 mAcm
-2

) 

The thermodynamic parameters for the oxygen evolution reaction on pure and copper doped 

LaCoO3 perovskite oxide film electrode was determined by recording the polarization curves for in 1M 

KOH at varying temperatures (20°-50°C). The temperature of the reference electrode was kept 

constant (25°C) during the experiment. A representative polarization curve is shown in the Fig. 11 for 

0.4 mol copper doped LaCoO3. From the polarization curve data, the Arrhenius plot, log j vs 1/T (Fig. 

12) was constructed at different constant potentials. The slope of straight lines gives the activation 

energy.  

 

 

 

Figure 11. Tafel plot for the La0.6Cu0.4CoO3 film electrode on Ni at different temperatures in 1 M 

KOH;    a: 20 °C,      b: 30 °C,      c: 40 °C,      d: 50 °C. 

 

3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45
0.8

1.2

1.6

2.0

La0.6Cu0.4CoO3

 625 mV

 650 mV

 675 mV

 700 mV

lo
g

 j
 (

m
A

 c
m

-2
)

1/T x 10
3

 

 

Figure 12. The Arrhenius plot for La0.6Cu0.4CoO3 film electrode on Ni in 1 M KOH at different 

applied potential. 

 

Other thermodynamic parameters such as H˚
#
 and S˚

#
 [48] were calculated by using 

following relations; 
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Hel˚
#
 = H˚

#
 – αF        ………….. (1) 

Where, α (transfer coefficient) = 2.303RT/bF and R, F and T are the gas constant, Faraday 

constant and absolute temperature, respectively. The Tafel slope (b) is calculated from the polarization 

curves obtained at different temperatures.  is the overpotential. 

S˚
#
  = 2.3R [log j + Hel˚

#
 /2.3RT – log (nFωCOH⁻)]   ……………(2) 

Where, ω (= kBT/h) is the frequency term and n = 2, kB and h are the Boltamann constant and 

Plank’s constant, respectively.  

The estimated values of transfer coefficient (α), standard apparent enthalpy of activation Hel˚
#
, 

standard enthalpy of activation (H˚
#
) and entropy of activation (S˚

#
) are given in Table 3. The 

thermodynamic parameters shows that the value of Hel˚
#
 is minimum (35.1 kJmol

-1
) for 

La0.6Cu0.4CoO3 oxide film electrode. Also, it is observed that the value of activation energy decreases 

with the increase of applied potential and it is well satisfied by the equation (1). The highly negative 

values (-195.7 Jdeg
-1

 mol
-1

) of ΔS°
#
 indicate the role of adsorption in OER.      

 

Table 4. Thermodynamic parameters for O2 evolution on Ni/ La1-xCuxCoO3 (0 ≤ X ≤ 0.8) in 1 M 

KOH. 

 

Electrode Hel˚
#
 (kJ mol

-1
) at 

E = 650 mV 

- ∆S°
≠
 

(Jdeg
-1

 mol
-1

) 

α ∆H°
≠ 

(kJ mol
-1

) 

LaCoO3  43.0 -184.9 0.7 68.3 

La0.8Cu0.2CoO3 45.3 -174.1 0.7 70.0 

La0.6Cu0.4CoO3 35.1 -195.7 0.5 52.3 

La0.4Cu0.6CoO3 42.3 -181.2 0.6 64.7 

La0.2Cu0.8CoO3 40.2 -182.7 0.5 58.3 

 

 

4. CONCLUSION  

 In summary, simple and low cost perovskite-type materials have been developed for 

electrocatalysis of oxygen evolution reaction in alkaline medium. The X-ray diffraction study indicated 

the formation of almost pure perovskite phase of the material with hexagonal crystal geometry. The 

electrochemical investigations revealed that the substitution of Cu for La in the base oxide increased 

the electrocatalytic activity towards OER. The value being highest with 0.4 mol Cu-substitution (ja= 

111.2 mAcm
-2

). The lowest value of activation (Hel˚
#
 = 35.1 kJ mol

-1
) also favours towards the better 

electrocatalytic activity of the material. The oxide electrode did not follow any regular trend in the case 

of roughness factor. However, the value was found to be highest with La0.8Cu0.2CoO3 (RF = 1244). 
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