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This work used electrochemical impedance measurements and anodic polarisation to study the 

corrosion susceptibility of Ti, Ti–6Al–4V and TZNT in a buffered saline solution (PBS). The 

impedance characterization model was obtained under open-circuit conditions and was a double-oxide 

film model consisting of an inner-barrier oxide layer and a porous, outer layer. Low-pitting potentials 

were obtained for TZNT. The property of the outer layer depended on the presence of phosphate 

anions in the saline-buffered solution (SBS) and the electrode material. The typical, low resistances of 

the porous layers generated on TZNT with phosphate anions ranged from 10 to 70 Ω cm
2
. Ti, TZNT 

and Ti–6Al–4V all displayed much higher porous layer resistances without phosphate anions.  
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1. INTRODUCTION 

The need for rapid osseointegration and stability of titanium implants has increased [1-3]. To 

prevent micro-motion and ensure successful implantation (primarily for immediate loading), fast 

osseointegration and bone remodelling of the implant is necessary. The quantity and/or quality of bad 

bone requires higher stimulation to achieve rapid, new bone generation, which is similar to the case of 

patients suffering from severe ridge resorption. Orthopaedic implanting is another field that is 

interested in this issue [4-6]. A few synergistic and contemporary functions are needed to achieve a 

high osteointegration capacity, thus, a description of a multifunctional surface is presented herein. The 
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absence of infections, a high-degree of cell differentiation, fast adhesion and proliferation of 

osteoblastic cells, protein adsorption, the bioactivity of the surface and apatite precipitation 

(mineralization) cooperatively lead to rapid healing and new bone formation. Because fast 

osteointegration lowers the risk of infection, rapid bacteria proliferation is associated with slow 

osteointegration. A “race to the surface” after implantation using fast, osteoblast-induced implant 

colonization could prevent bacteria-involved colonization on the same surface [7, 8]. Based on recent 

research, biological functionalization could be used to obtain a specific biological response, and the 

modification and tailoring of the surface wettability, topography and chemistry could be used to create 

a multifunctional action surface [9-11]. In addition, a scientific study has also shown there is interest in 

the enhancement of the anti-corrosion and mechanical features of Ti-based materials [12, 13]. To 

enhance the bone-bonding ability of titanium-based implants, large numbers of solutions have been 

developed in the medical equipment market and in scientific works with the aim of enhancing the 

bone-bonding ability of titanium-based implants [14-18]. 

Titanium allotropically transforms from a hcp structure (α-phase) to a bcc structure (β-phase) at 

a temperature of 882°C [19]. The titanium alloys were divided into three sub-types, including α alloys, 

β alloys and α+β alloys, due to this structural variation. The selected alloying additions were α 

stabilizers, and the other elemental additions were β stabilizers. The corrosion of metal implants is 

importance since corrosion can have adverse effects on the mechanical integrity and biocompatibility 

of implants. The material used cannot lead to any adverse biological reactions in the body. In addition, 

the material should have stability and maintain its functional nature. Corrosion and surface film 

dissolution are different mechanisms that introduce additional ions into the body. Adverse biological 

reactions can be caused by excessive metal ion release, and the release results in the mechanical failure 

of the equipment. Amorphous titanium dioxide is the main constituent in the passive films produced on 

titanium and its alloys [20-22]. The electrochemical and physicochemical features of the oxide film 

and its long-term stability under biological circumstances determine the biocompatibility of titanium 

implants [23-26]. 

In this work, the effect of the alloy constituents and potential on the corrosion resistance of Ti, 

Ti–6Al–4V and Ti12.5Zr2.5Nb2.5Ta (TZNT) biomedical implant alloys was investigated using an 

electrochemical impedance spectroscopy (EIS) method under simulated physiological conditions. A 

surface-modified layer, created by H2O2-HNO3-containing polarization, was obtained. A higher 

corrosion resistance was observed. The passive film on the treated, commercially pure titanium surface 

was thinner and had a lower hydroxylation degree and reactivity than the film on the treated alloy. 

 

 

 

2. EXPERIMENTS 

Ti–6Al–4V, pure titanium (99.999%) and Ti12.5Zr2.5Nb2.5Ta (TZNT) were purchased from 

Tuteng Metal Co. Ltd. (Baoji, China) and used to prepare the electrodes. The electrode rods were 

embedded into an epoxy resin in a Teflon holder, and a copper wire was threaded into the metal 

specimen base to realize electrical contact. The TZNT wire electrodes were fabricated via polarization 
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in a HNO3-containing solution with 0.1 M H2O2. This primary oxidation pretreatment for deliberate 

electrode fabrication eliminates the crevice attack that occurs at the interface of the resin and electrode. 

The exposed surfaces were polished to a smooth surface finish before each experiment. The auxiliary 

electrodes were high-density graphite rods. The reference electrode was a saturated calomel electrode 

(SCE), and all the potentials were recorded relative to the reference electrode. PBS was used as the 

electrolyte, and the solutions were kept at 37°C throughout the experiments.  

Potentiodynamic electrochemical experiments were performed using a PARC 5210 lock-in 

amplifier-supported PARC 263 A potentiostat. The working electrodes were polarized below the 

corrosion potential of 30 mV in the anodic direction (scan rate: 0.5 mV/s) after an initial delay period 

(0.5 h) under open-circuit conditions. All the current data were obtained with respect to the geometric 

surface area. An EI 1287 electrochemical interface and a Solartron 1250 frequency response analyser 

were used to obtain the impedance measurement data. Spectra were obtained at the corrosion potential 

under open-circuit conditions for varied immersion times. The corrosion experiments were conducted 

at 37 ± 1°C in Hank's SBF, and the composition is given in Table 1. All impedance data (real and 

imaginary components) were fitted to proper equivalent circuits using a complex, non-linear least-

squares fitting procedure. The excitation voltage (10 mV) was applied throughout the experiments. 

 

Table 1. Composition of Hank's simulated body fluid. 

 

Regent Amount (g/L) Regent Amount (g/L) 

NaCl 8.00 C6H6O6 1.00 

KCl 0.40 MgCl2·6H2O 0.10 

CaCl2 0.14 MgSO4·7H2O 0.06 

NaHCO3 0.34 KH2PO4·H2O 0.06 

Na2HPO4·7H2O 0.05   

 

 

3. RESULTS AND DISCUSSION 

 
 

Figure 1. Anodic polarization curves of Ti, Ti–6Al–4V and TZNT in PBS at 37°C. 
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The anodic polarisation performances of Ti, TZNT and Ti–6Al–4V, which were polarized in 

PBS at 37°C, are characterized in Fig. 1 (Scan rate: 0.5 mV/s). The plots for Ti and Ti–6Al–4V are 

typical of significantly passive systems. In terms of the Ti electrode, the passive current density was 

2.5 μA/cm
2
. The current remained low even when the potential was more anodic than 1.6 V. Compared 

with titanium polarized in Hank’s solutions, the titanium in this work exhibited a higher passive 

current density. According to other studies [27-29], Ti and its alloys are composed of a double-layered 

oxide consisting of a porous, outer layer and an inner-barrier layer. 

However, the higher density is because the scan rates used in this study were higher than the 

potentiostatic or typically used slow scan rates (0.15 mV/s). Ti–6Al–4V exhibited a similar 

performance, but the anodic current increased to ca. 18 μA/cm
2
 at 1.0 V as the potential increased. 

Nevertheless, TZNT, the shape-memory alloy, showed a remarkably varied electrochemical 

performance. The potential oscillations during the polarization could be due to a balance between de-

passivation and re-passivation on the wear tracks [30]. At comparatively low anodic potentials, a 

passive system, which was characterized by a low passive current density, was indicated. However, in 

the potential region of 0.2 V, an obvious, stable anodic current increase, which is typical of passive 

film breakdown and pitting attack, was observed. 

Physiological media containing ions such as fluoride and chloride can break the oxide film that 

forms and cause pitting corrosion [31, 32]. Several pitting scans were performed to study the statistical 

property of the pitting attack on the TZNT electrode, and the pitting potential was calculated 

considering the cumulative possibility of the pitting occurrence. Fig. 2 shows the pitting potentials as a 

function of the cumulative possibility. The variation in the pitting potentials was observed in the range 

from 200 (comparatively low) to 520 mV, and the mean value was calculated to be 377 mV. The 

susceptibility of the TZNT electrode to a pitting attack was shown by these results. 

 

 
 

Figure 2. Cumulative probability plot of the breakdown potentials for TZNT in PBS at 37°C. 

 

Fig. 3A indicates the characteristic cyclic polarisation data for TZNT in PBS at 37°C (scan 

rate: 1.0 mV/s), and the data suggested that, for the TZNT electrode, repassivation is unlikely upon its 

activation. A low passive current density (ca. 1 μA/cm
2
) was obtained for the forward scan, which 

corresponded to the passive performance. The pitting attack initiation was indicated by the remarkable 
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increase in the current recorded ca. 570 mV. Upon polarization of the electrode, there is a temporary 

decrease in the current, which continued in the anodic direction. Studies have reported that the 

liberation of small amounts of alloy elements can cause cytotoxic effects in the human body and lead 

to adverse reactions when the alloy presents an elastic modulus that is incompatible with the bone. 

This incompatibility might cause a stress shield between the implant and the bone, which can cause 

bone resorption and premature failure in the implant [33, 34]. However, a repeated, rapid increase ca. 

800 mV was observed. Upon an increase in the anodic current over 1 mA/cm
2
, the applied potential 

was reversed and scanned in the electronegative direction. Nevertheless, the anodic current continued 

to increase to a density of ca. 0.3 A/cm
2
, which indicated increasing pitting attack rates despite the 

decreased potential. Even at 0 V, a high anodic current was still observed, which suggested the absence 

of repassivation under these conditions.  

The TZNT electrode resistance to pitting attack initiation was increased via surface 

modification. Fig. 3B displays the characteristic anodic polarisation plots for the Ti–45Ni electrode 

after it was modified. The electrode was immersed in a H2O2 solution (100 mM) containing a 

supporting electrolyte, Na2SO4 (0.1 M), and was polarized (open-circuit potential - 800 mV) to modify 

the surface. Three separate plots that are characteristic of the recorded data are displayed herein. As 

shown in these results, the breakdown potential remarkably increased after the surface modification 

process. The increase in the potential indicated that the sample possibly underwent an electrochemical 

reaction in the electrolyte medium, and a porous or defective oxide layer was formed. The passive 

region is associated with the formation of one or more protective oxide films. Compared with the 

unmodified electrodes, the modified electrodes regained their activity at low potentials upon 

activation. 

 
 

Figure 3. (A) Cyclic polarization plot for TZNT in PBS at 37°C. (B) Anodic polarization plots for 

TZNT in PBS at 37°C after modification in a solution containing H2O2. 

 

The characteristic electrochemical impedance data for Ti in PBS at 37°C under open-circuit 

conditions after 300 and 1000 min of immersion are displayed in Fig. 4A. According to the impedance 

data, the Ti system has a capacitive performance over a comparatively wide frequency domain, which 
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is characteristic of passive systems. There was a time-related evolution for the impedance response, as 

shown in the comparison of the two sets of test data. The high frequency and medium frequency 

domains both showed almost no variations in their patterns, while the lower frequency domain 

exhibited a remarkable variation. The plots in Fig. 4B show that the fitting parameters changed with 

the immersion time. The resistance elements are displayed as a function of time (Fig. 4B), and the 

constant phase elements as a function of time are shown in a similar plot (Fig. 4C). During the 900-

min immersion, the resistance element, Rpr, was essentially stable. However, as the immersion time 

lengthened, there is an element, R1, increase that represents the barrier layer resistance, which indicated 

a reduction in the corrosion resistance of the samples. 

 

 
 

Figure 4. (A) Impedance data for Ti in PBS at 37°C. (B) Resistance elements and (C) constant phase 

elements plotted as a function of time for Ti in PBS at 37°C. 

 

The Ti–6Al–4V alloy in PBS at 37°C under open-circuit conditions after 120 and 1000 min 

immersions was characterized via a characteristic electrochemical impedance spectrum, as shown in 

Fig. 5A. The experimental data also agrees well with the simulated data. Fig. 5B shows a Nyquist plot 

of the impedance data, and the data indicated that a diffusion element exists. The low-frequency data 

are represented by a line at an angle of 45°, which suggested diffusion processes across the double-

oxide layer on the implant electrode. The property variation in the Ti–6Al–4V passive layer depends 

on the time, as indicated by the two plots (Fig. 5A). The near capacitive performance in the mid-

frequency domain is characteristic of the impedance response during the early stages of immersion, 

and the diffusion processes are obvious at low frequencies. The resistance elements, Rpr and R1, are 

displayed in Fig. 5C, and the constant phase elements, Qpr, Q1 and Q2, are displayed in Fig. 5D. Both 

elements are displayed as a function of the immersion period for Ti–6Al–4V in PBS. Rpr was below 

5 Ω cm
2
 during the early stages of immersion and increased to 30 Ω cm

2
. A film that has a high 

resistance should have a high corrosion resistance, and a decrease in the passive film capacitance 

correlates with the slow growth of the titanium and molybdenum oxides and the long-term stability of 

the thin passive film [35-37]. The aforementioned values display an extremely low resistance for the 

porous layer. In comparison, R1, which represents the inner-barrier layer resistance, had a high value in 

all the analyses. With an increase in the Rpr term, the constant phase element of Qpr decreased during 

the early immersion stage. Q1 was basically steady in all the tests, which suggested the inner-barrier 

passive film is stable, but there was a slight increase in the diffusion component with the immersion 

time. 
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Figure 5. (A) Impedance data for Ti–6Al–4V in PBS at 37°C. (B) Nyquist plot of Ti–6Al–4V after 

1000 min. (C) Resistance elements and (D) constant phase elements plotted as a function of 

time for Ti–6Al–4V in PBS at 37°C. 

 

Fig. 6 shows similar impedance data for TZNT in the phosphate buffered chloride solution. The 

plot recorded after 1 h of immersion in the saline solution is represented by the symbols, and the 

corresponding simulated data are represented by the solid lines. The experimental data agreed with the 

simulated data. These results corresponded to the results of the TZNT system. Specifically, the 

impedance response is characteristic of a diffusion element dominating the response in the low-

frequency domain, and a near capacitive element dominates the response in the medium-frequency 

domain during the early stage immersion. Nevertheless, a high-frequency term forms after constant 

immersion. Fig. 6B and 6C display the equivalent circuit parameters (Rpr and R1) and the constant 

phase elements (Qpr, Q1and Q2), respectively, for TZNT as a function of the immersion period. There 

was an increase in Rpr (below 10 Ω cm
2 

– ca. 70 Ω cm
2
) for Ti–6Al–4V as the immersion continued. 

However, the parameters indicated comparatively low resistances. Qpr represents the initial, outer, 

porous layer drop and reached a steady-state value after a short period of time. Q1 represents the 

capacitance of the inner passive film and was constant throughout the experiments. R1 remained 

constant at values of approximately 4.0×10
4
 Ω cm

2
, which suggested stable passive 

conditions. Although this indicated the stability of the TZNT system, the slight increase in the 

diffusion term Q2 was confirmed after immersion for over 2000 min. 

 

 
 

Figure 6. (A) Impedance data for TZNT in PBS at 37°C. (B) Resistance elements and (C) constant 

phase elements plotted as a function of time for TZNT in PBS at 37°C. 

 

4. CONCLUSIONS 

This study investigated the corrosion resistance of TZNT, Ti and Ti–6Al–4V in a saline-

buffered solution. As shown in the results, Ti and Ti–6Al–4V displayed high resistances to the 
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initiation of localized corrosion, but the initiation of pits occurred at low potentials on TZNT. TZNT 

exhibited an increasing number of noble pitting potentials during surface modification in a H2O2-

containing solution. Nevertheless, TZNT before and after modification displayed low repassivation 

potentials, which suggested that upon initiation, the pits could propagate at potentials remarkably 

lower than the pitting potential. The passive films produced on the aforementioned electrodes were 

assayed with respect to a double-oxide layer, which consisted of an outer, porous layer and an inner 

barrier. The properties of the porous layer are dependent on the features of the alloy and the solution 

anion groups.  
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