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Histidine (ethyl-2-amino-3-(1H-imidazol-2-yl) propanoate), a raw material, was used to synthesize a
new green histidine dimer (2-(2-amino-3-(1H-imidazol-2-yl)propanamido)-3-(1H-imidazol-2-
yl)propanoic acid) inhibitor. The corrosion inhibition properties of histidine and the histidine dimer for
N8O steel were explored in 3 wt% NaCl solution through weight loss experiments and electrochemistry
experiments (including potentiodynamic polarization tests and electrochemical impedance
spectroscopy (EIS)). The surface morphology and elemental composition of corroded N8O steels were
analysed by scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray
photoelectron spectroscopy (XPS). Weight loss experiments showed that the histidine dimer has better
inhibitory performance than histidine. When the dosages of histidine and the histidine dimer reached
250 mg/L, the inhibition efficiency reached maximum values of 86% and 94%, respectively. In
addition, the results of Scanning Electron Microscopy (SEM) and X-ray photoelectron spectroscopy
(XPS) further confirmed that histidine and the histidine dimer can form a protective layer on the
surface of N8O steel. The inhibition mechanism and molecular structure of histidine and the histidine
dimer were analysed by quantum chemical calculation methods, and the results showed that the better
inhibition efficiency of the histidine dimer may be due to the increase of adsorption sites on the
histidine dimer compared with histidine, which facilitates adsorption on the surface of N80 steel.
Moreover, the examination of adsorption properties showed that the adsorption behaviour of histidine
and the histidine dimer on N80 steel followed the Langmuir adsorption isotherm model.
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1. INTRODUCTION

The corrosion of carbon steel generally occurs in the process of industrial production and
frequently poses many serious problems that affect the safety of the operator and cause a great amount
of economic loss[1]. Local corrosion is a common phenomenon of metal corrosion. Salt solution leads
to the localized corrosion of carbon steel[2, 3]. Moreover, some previous studies have shown that the
chloride ions of chloride solutions lead to pitting corrosion on the metal surface when placing carbon
steel in a chlorine solution [4-6]. Caceres [7] demonstrated that most holes on steels appear around the
destroyed areas and further contribute to the local dissolution of carbon steel in the NaCl solution. In
these conditions (including seawater and some industrial environments), the oxygen reduction reaction
(ORR) on the steel’s surface may cause large-scale corrosion damage to unprotected carbon steels[8,
9]. One of the main methods used to protect carbon steel is the use of corrosion inhibitors in neutral
NaCl solutions [10], which can retard metal corrosion at the interface of the corrosion media and the
steel’s surface. In previous studies, organic compounds containing nitrogen, oxygen or sulphur atoms
have been widely used as potential inhibitors [11-17]. However, most of them are synthetic chemicals
with biologic toxicity and are too hazardous for human beings and the environment. For this reason,
developing a non-toxic, environmentally friendly and cheaper corrosion inhibitor is warranted.

A series of amino acids as green inhibitors were recently reported to be non-toxic and
biodegradable[18] and showed good corrosion inhibition with carbon steel[19-23], iron[24],
copper[25, 26], aluminium[27], vanadium and alloys[28]. Compared to other amino acids, histidine
contains not only carboxyl and amino groups but also an imidazole ring. Additional groups and an
imidazole ring increase the electron density of inhibitors and have shown a greater inhibition effect
because they offer a pair of lone electrons or have low-energy empty orbitals to receive electrons,
forming a physical barrier on the metal surface via adsorption reaction [29-31]. Fu [32] first explored
L-histidine as a corrosion inhibitor and its inhibitory performance for mild steel in HCI solutions.
Bobina [33] also studied L-histidine as a corrosion inhibitor for mild steel in a weak acid media
containing acetic acid/sodium acetate. The results showed that the maximum value of the inhibitory
efficiency of L-histidine could reach 81.6% in the corrosion media. In addition, most current green
inhibitors were investigated in acid solution, such as hydrochloride acid[18, 19, 32, 34], sulfuric
acid[35], and nitric acid[36]. However, few studies have focused on the application of green inhibitors
in sodium chloride solution. Furthermore, the synthesis of a histidine dimer as a green inhibitor for
N8O steel in 3wt% sodium chloride solution has not yet been reported.

In this paper, we synthesized a histidine dimer (2-(2-amino-3-(1H-imidazol-2-
yl)propanamido)-3-(1H-imidazol-2-yl)propanoic acid) to increase the number of molecular adsorption
sites to obtain a more effective and green inhibitor. Moreover, the inhibitory performance of histidine
and histidine dimer for N80 steel in 3 wt% NaCl solution was evaluated through weight loss and
electrochemical tests. The surface morphology and elemental composition of corroded N80 steel were
analysed utilizing scanning electronic microscopy (SEM), energy disperse spectrometry (EDS) and X-
ray photoelectron spectroscopy (XPS). Furthermore, the inhibitory mechanisms of histidine and a
histidine dimer for N80 steel in 3 wt% NaCl solutions were clarified using quantum chemical
calculations.
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2. EXPERIMENTAL

2.1. Materials

In this study, Carbon steel (N80) of chemical composition (0.24% C, 0.22 %Si, 1.19%Mn,
0.013% P, 0.004 %S, 0.015% V, 0.0036 %Cr, the remainder Fe) (22 mmx12mmx2mm) with a hole
diameter of 3mm. Prior to experiment, the surface of steel is polished by mechanically grounding with
400, 800, 1000 and 1200 emery paper, washed orderly with distilled water, ethanol and acetone.
During the investigation, 3 wt % sodium chloride solution was the corrosive medium. Histidine (ethyl-
2-amino-3-(1H-imidazol-2-yl) propanoate), ethanol, acetone and sodium chloride (NaCl) were
supplied by Chemical Reagent Factory (Chengdu, China). All chemical reagents were of analytical
grade and were used without further purification. Deionized water with a resistance of 18.2 MX cm
was provided by a UPC-111 water purification system.

2.2. Synthesis of histidine dimer (2-(2-amino-3-(1H-imidazol-2-yl) propanamido)-3-(1H-imidazol-2-yl)
propanoic acid)

The molecular structure of the histidine dimer is shown in Fig 1. At first, 2 g histidine was
added to a 250 mL three neck flask and 40 mL absolute ethanol was poured into the flask and stirred at
323.15 K. Then, concentrated hydrochloric acid was added into the mixture drop by drop until the
histidine dimer was completely soluble. The mixture continued to react for 30 min. Histidine ethyl
ester hydrochloride (HEEH) was obtained by removing excess ethanol. Next, the histidine ethyl ester
hydrochloride was dissolved in the distilled water, 30wt% NaCl solution was added and the pH value
was adjusted to 8-9. Then, a white precipitate of histidine ethyl ester was obtained. Subsequently, 10
mL distilled water was mixed with the histidine ethyl ester and an equal molar concentration of
histidine dimer. Then, triethylamine (acid-binding agent) and DMAP were added to the mixture. The
mixture was stirred at 323.15 K for 24 hours. After the reaction, the solvent was distilled under a
vacuum. A small amount of water was used to dissolve the precipitate, and the pH value was adjusted
to 2-3 with hydrochloric acid. Finally, the solution was extracted by ethyl acetate, and the supernatant
was dried by anhydrous magnesium sulphate overnight. The solvent was distilled under a vacuum, and
the product was obtained by column chromatography. The eluent of petroleum ether: ethyl acetate is
2:1. The synthesis of the histidine dimer is shown in Scheme 2.
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Scheme 1. Structural formula of Histidine dimer
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Scheme 2. Synthesis route of Histidine dimer

2.3 Structure characterization

We confirmed the chemical structure of composition through Fourier Transform Infrared
Spectrometer (FT-IR) (WQF520) and Nuclear Magnetic Resonance Spectroscopy(NMR) (Bruker
AVANCE III HD 400). The 'H NMR test for histidine dimer was conducted under CDCI3 atmosphere.

2.4. Weight loss

The prepared specimens of N80 carbon steel were accurately weighed and the surface area was
computed. These specimens were immersed in the 3wt% NaCl solution containing the different
concentrations of inhibitors, and the temperature of the solution was maintained at 298 K. After a
specific time period, the specimens were removed, washed, dried, and weighed accurately. The
average weight loss of the three parallel specimens was obtained. The inhibition efficiency (r) and the
degree of surface coverage (8) at different concentrations of investigated inhibitors on the corrosion of
specimens were calculated as shown in Egs. (1), (2) and (3)[37].
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Where am is the average weight loss of the three parallel specimens, S and T are the area of

metal surface and immersing time in corrosive medium, respectively. #2., and «.,, represent the

corrosion rate of N80 steel in 3wt% NaCl without and with inhibitor solution, separately.

2.5. Electrochemical experiments

An electrochemical work station including a computer-controlled system (CorrTest Company,
Wuhan, China) and a conventional three-electrode compartment were employed in the experiment.
The N80 carbon steel was used as a working electrode (WE) along with a platinum counter electrode
as the auxiliary electrode (AE) and a saturated calomel electrode (SCE) as the reference electrode
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(RE). The corrosive medium was the 3 wt% sodium chloride (NaCl) solution containing the different
concentrations of inhibitor. It was maintained at 298 K.

Polarization measurements-the polarization measurements were carried out at the potential range from
-0.80 to -0.25 V vs. SCE with a scanning rate of 1 mV-s™. The linear Tafel segments of the anodic and
cathodic curves were extrapolated to the corrosion potential (Ecor) to obtain the corrosion current
density (icorr). The inhibition efficiency #, %) and surface coverage (6) was determined by Egs. (4) and

).

.0 ,
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m, (%) = w x 100 (4)
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Where i, and i,,.. represent the corrosion current density in absence and presence of
inhibitor, respectively[38, 39].

Electrochemical impedance spectroscopy measurements-EIS were tested in the frequency from 100
kHz to 0.01 Hz at alternating current amplitude of 5 mV sine wave. The software ZSimpWin was used

to analyze the impedance data, inhibition efficiency »,(%) calculated by the following Eq. (6):
_ R:t - Rgt

ct
where R’ and R, are charge transfer resistances in the corrosive medium without and with the

different concentration of inhibitor, respectively[38].

X 100 (6)

2.6. Surface analysis

To investigate the morphology and elemental composition of corrode steels, the specimens
were treated in 3wt% sodium chloride solution without or with 0.15g /L inhibitors at 298 K for 72
hours, followed by washing with distilled water under ultrasound for several minutes, and placed into
dryer. Then they were characterized by the scanning electron microscope (JSM-7500F) and X-ray
photoelectron spectroscopy (XPS) (KRATOS, XSAMS800).

2.7. Quantum chemistry calculations

Geometric optimization, orbital energy calculations, chemical potentials, Hirshfeld charges,
and the corresponding Condensed Fukui functions of inhibitor molecules were performed using all
based on the B3LYP-D3 (BJ) functional combination of 6-311G * basis sets (for C, O, N) and 6-31G *
basis sets (For H) using Gaussian 03 program package, and then the trajectory graphics were drawn by
Multiwfn + VMD.
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3. RESULT AND DISCUSSION

3.1FTIR

The FT-IR of histidine and histidine dimer were showed in Fig 1 (a) and Fig 1 (b), respectively.
The peak around 3419 cm “was stretching vibration of N-H and the peaks of 1612 cm™ was the C = O
stretching vibration peak in Fig 1 (b) ,which confirmed the presence of an amide bond[17]. The peak
observed near 1335cm™ was the stretching vibration of C-N of imidazoline ring structure, other peaks
at 1300~1200 cm™ were due to the characteristic absorption peaks of C-N group of imidazole ring in
Fig 1 (b). These results proved histidine dimer was successfully synthesized.
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Figure 1. FTIR spectrum of Histidine(a) and Histidine dimer(b)

3.2 The spectrum of'H NMR
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Figure 2. *H NMR spectra of Histidine dimer in CDCl;

The result of "H NMR of histidine dimer showed Fig 2, §=7.81 ppm are corresponding to the
chemical shift of amide groups,6=6.86 ppm represented the chemical shift of the protons on the two
imidazoline rings [22]. 6=4.89 ppm signified the chemical shift of the amino groups, around 6=3.17
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indicated the chemical shift of the Methylene beside the two imidazoline rings. The signals located at
broad chemical shifts in the region of 3.91-3.8 ppm were attributable to chemical shift of the inner
methylidyne. Therefore, it can be conclude that histidine dimer has been successfully synthesized.

3.3 Weight loss studies

Table 1 showed result of weight loss test of N80 carbon steel was immersed in 3wt% sodium
chloride solution contained the different concentration (0.05, 0.1, 0.15, 0.2, 0.25 g/L) of inhibitors at
298K for72 hours. 0 is the coverage of the corrosion inhibitor on the surface of the steel sheet, and 1 is
the corrosion inhibition efficiency. When the dosage of histidine and histidine dimer both have reached
0.25 g/L, the value of inhibition efficiency (n) reached 86% and 94%, respectively.

Table 1. The parameters of weight loss experiment for N80 carbon steel in the 3wt% NaCl solution
with various concentrations of histidine and histidine dimer at 298 K.

C(mg-L™) histidine histidine dimer
1 (%) 6 (%) 1 (%) 8 (%)
50 76 76 81 81
100 80 80 88 88
150 82 82 90 90
200 86 86 93 93
250 86 86 94 94

At the same time, the results showed that the histidine and histidine dimer both can mitigate the
corrosion of N80 steel in 3 wt% NaCl solution well, but histidine dimer has more inhibition efficiency
at the same dosage. It could be that histidine dimer has bigger molecular size and more high electron
density of active groups and atoms [40], histidine dimer molecules with more oxygen, amino groups,
imidazoline ring functional can more easily adsorb on steel surface to form a compact protective layer
to reduce the corrosion of N80 steel in 3 wt% NaCl [29]. At the same time, we can see that inhibition
efficiencies of histidine and its dimer corrosion inhibitor did not change much at several concentrations
above 0.1 g / L, it may be due to corrosion inhibitor molecules have basically covered the metal
surface, so with the increase in concentration of corrosion inhibitor, the change of corrosion inhibitor
efficient is not obvious.
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3.4 Electrochemical analysis

3.4.1 Potentiodynamic polarization tests
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Figure 3. Polarization curves for the N80 carbon steel in 3 wt% NaCl solution in the presence of
different dosages of histidine and histidine dimer at 298 K (a—histidine, b--histidine dimer)

Fig 3(a, b) displays polarization curves for N80 in 3wt% NaCl with different concentrations of
histidine and histidine dimer at 298K. It can be seen from Fig 3 (a, b) that the corrosion potential both
moves toward the negative direction after adding histidine and its dimer, and then the corrosion current
density also decreases, it indicated that inhibitor formed a adsorption layer on steel surface, which
obstructed the contact between the corrosion medium and steel sheet and has a good corrosion
inhibition efficient. But histidine dimer has lower corrosion current density, it indicated that histidine
dimer has a better inhibition property.

Table 2. The electrochemical kinetic parameters for polarization curves

Inhibitors C(mg'LY)  Ewe(MVVSSCE) B (mV-dec) FomV-dec?)  icon(mA-em?)  77,(%)
0 -686 -48.2 95.0 1.7x10™ -

50 -720 -189.6 74.7 1.5x107 90.8

Histidine 100 -760 -239.7 713 1.5x107 91.1
150 -754 -188.5 67.4 1.3x10° 92.2

200 -663 -200.1 66.2 1.3x10° 92.4

250 -695 -155.9 65.0 1.2x10° 93.1

o 50 -525 -482.7 63.6 1.7x107 89.6
H('jsitr'nd;;‘e 100 671 -249.1 95.7 17%10°5 901
150 -662 -229.7 92.8 1.5x107 91.0

200 -700 -132.0 65.8 0.9x10° 94.9

250 -568 -397.1 95.3 0.8x10° 95.2

The polarization parameters such as corrosion potential (Ecorr), corrosion current density(icor)
and anodic (f,)/cathodic (f;) Tafel slopes were presented in Table 2. It can be observed that the values
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of i¢orr Was decreased with the increasing of the concentration of histidine and histidine dimer. There is
no explicit trend in the range of E¢r Values with concentration change of histidine and histidine dimer.
However, after adding inhibitor, cathode Tafel slopes (f.) and anode Tafel slopes (f,) both shifted with
the concentration of histidine and histidine dimer relative to corrosion potential of blank sample. For
these two inhibitors, the changes of cathodic slope are more pronounced than anodic slope. It indicated
that both histidine and histidine dimer are attributed to mixed-type with predominantly cathodic action.
[41].

The changes of anodic slope(f,) with addition of histidine and dimer suggest that the two
inhibitors adsorb on N80 steel surface and cover the reaction sites of metal surface. Meanwhile,
cathodic slope (5c) values change with the addition of histidine and histidine dimer suggesting that
mechanism of hydrogen evolution reaction is changed in the presence of two inhibitors. This result
illustrated that histidine and histidine dimer both can form a barrier on metal surface and protect steel
from corrosion in salt solution. Based on the analysis of polarization tests, the results obtained from
polarization method is coincident with the weight loss result [38, 42].

3.4.2 Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy was used to examine the corrosion inhibition
processes of N80 carbon steel in inhibited and uninhibited solution.
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Figure 4. Nyquist (a, b) and Bode (c, d ,e, f) plots for the N80 carbon steel exposed in 3wt% NaCl
solution in the absence and presence of different dosages of histidine and histidine dimer at 298
K (a, c, e-histidine, b, d, f -histidine dimer)

Nyquist (a, b) and Bode (c, d, e, f) plots for N80 carbon steel after immersion in 3 wt% NaCl
solution with different dosages of histidine and histidine dimer are shown in Fig 4. As shown in Fig
4(a, b), all the plots have a single depressed semicircle appearance in the complex impedance plane
with the centre up the real axis, and the diameter of the semicircle increases with an increasing
concentration of inhibitors, indicating that the corrosion resistance of carbon steel was increased. From
Fig 4(c, d, e, T), it should be noted that although the shapes of these graphs are similar throughout the
experiment, adding the inhibitor does not change the corrosion mechanism[43].

Table 3. The parameters of electrochemical impedance spectroscopy for N80 carbon steel in the 3
wt% NaCl solution with various concentrations of histidine and histidine dimer at 298 K.

Inhibitors - C/me-L™ o 6y cm?  Qu/(F/cm®)  n/(0<n<1) Ry/Q-em?  1m./%
0 5.4 2.2x10™ 8.1x10*t 197.8 --
50 10.1 3.1x10™ 8.3x107t 566.7 65.1
o 100 14.1 2.6x10™ 8.0x10t 743.1 734
Histidine
150 14.3 7.5x10™ 8.4x10t 837.5 76.4
200 11.5 6.7x10™ 8.4x10t 894.6 77.9
250 12.4 7.1x10™ 8.3x10%  1020.0 80.6
50 14.1 6.9x10* 8.3x10*" 727.3 72.8
100 13.9 7.9x10™ 8.0x10t 793.2 75.1
Histidine g 123 3.0x10%  7.6x10*  987.4 800
dimer 4 1
200 10.1 9.0x10 8.2x10 1163.0 83.0
250 25.1 6.3x10* 8.3x101  1285.0 84.7
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Figure 5. Electrical equivalent circuit model of EIS(Rs--solution resistance; Rct--charge-transfer
resistance; and Q-- constant phase element of electrical double layer.)

The electrical equivalent circuits (EECs) based on impedance spectra are shown in Fig 5. The
EIS data included the solution resistance (Rs) and charge transfer resistance (Rct) in a parallel
combination with a constant phase element (Q). We used the constant phase to replace the double layer
capacitance (Qgq) to obtain a more accurate and representative fit. Table 3 shows the corresponding
fitting data. The values of Rct were increased due to the addition of a different concentration of
histidine compared to the blank solution, and the inhibitors’ effectiveness also increased. This
indicated that the addition of corrosion inhibitor molecules could be absorbed on the surface of the
steel sheet and gradually form an organic adsorption layer to replace the water molecule layer and
mitigate the dissolution of metals to inhibit corrosion [8, 44]. The organic layer between the metal
surface and solution was generally considered an electrical double capacitor. Qg decreased with the
increase of inhibitor concentration, which represented the increase in the thickness of the electric double
capacitance layer and the decrease of the dielectric constant. Rs shows that the addition of corrosion inhibitor
was much higher than the blank sample and was increased with increasing concentrations of inhibitor,
indicating that the density of the corrosion inhibitor film increased[45]. The maximum inhibition
efficiency (5./%) reached 80.60% and 84.61% at 0.25g/L of histidine and histidine dimer, respectively.
The corrosion inhibition efficiency was similar to that obtained by the weight loss experiment. Based
on EIS, the histidine dimer showed a better inhibitory performance than histidine for N80 steel in a 3
wt% NacCl solution.

3.4 Metal morphological analysis
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Figure 6. SEM images and EDS spectra of (a) blank, (b) 200mg/L histidine and (c) 200mg/L histidine
dimer.

To observe the surface characterization of corroded N80 steel in 3 wt% NaCl solution,
scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were applied on the
uninhibited and inhibited N80 steel in this experiment. As shown in Fig 6(a), the metal surface was
seriously damaged by localized corrosion in non-inhibitive solution. In the presence of histidine and
the histidine dimer (Fig 6(b, c)), the surface of the N8O steel sheet uniformly showed little corrosion.
Moreover, the percentages of atoms studied by EDS are listed in Table 4. The results indicated that
along with addition of histidine and the histidine dimer, oxygen atom of the N80 steel surface decrease
and even disappear compared to the unprotected steel, indicating a protective layer was formed on the
carbon steel surface and was preventing the steel surface getting further corroded. The change of the
oxygen atom reflects the histidine dimer was a better inhibitor compare to histidine[46, 47]. SEM and
EDS experiments illustrated that histidine and the histidine dimer both impede the corrosion process of
N8O steel in sodium chloride solution and exhibit good inhibition.

Table 4. The percentages of atoms studied by EDS

Atomic(%) C ) Fe Mn Cl

Blank 13.6 59 26.6 0.3 0.4
Histidine 1.5 44.7 53.4 0.4 -
Histidine 2.8 -- 96.5 0.6 --

Dimer
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3.5 X-ray photoelectron spectroscopy (XPS)

Fig 7 shows the XPS spectrum of N80 steel after it was immersed 72 hours in 3 wt% NaCl
solution with 0.20 g/L histidine and 0.2 g/L histidine dimer. As shown in Fig 7 (a), Fe, C, and O peaks
appeared in the XPS spectrum of histidine.

uuuuuu
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Figure 7. XPS spectra for Histidine and Histidine dimer on N8O steel (a: Histidine, b:Histidine dimer)

Besides the Fe, C, and O peaks, there were N peaks in the XPS spectrum of the histidine dimer
(shown in Fig 7 (b)). This demonstrates that histidine dimer adsorbs on the N80 steel surface[48, 49].
Moreover, Fig.8 displays the C1s and N1s spectra for N80 carbon steel treated with histidine dimer. In
the C1s spectra, the peak at 284.6 eV corresponded to C-C and C-H chemical bonds in aromatic
hydrocarbons. The peaks at 286.0 eV and 288.0 eV corresponded to C=0 and N-C=0 bonds[50]. In
the N1s spectra, the appearance of the peaks in the region of 398.8, 399.7 and 401.4 eV corresponded
to the chemical bonds of N-Fe, N-C and NH-C=0, respectively. The appearance of these chemical
bonds could also represent the adsorption of the histidine dimer on the surface of N80 steel[51].

L L L L L L L L L L L
295 290 285 280 275 270 408 406 404 402 400 398 396 394 392

Binding Energy(eV) Binding Energy(eV)

Figure 8. Cls and N1s spectra for Histidine Dimer treated on N80 carbon steel

3.6 Adsorption property

The adsorption isotherm (Langmuir, Temkin and Frumkin.) to describe the adsorption process
of histidine and histidine dimer, substituting the experimental data into the eq.7, it found that the
adsorption of histidine and histidine dimer on N80 steel obey the Langmuir adsorption isotherm.
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Ci .
iy =1/ TG )

Where, 0 is the surface coverage listed in Table 1. Ky and C;are the equilibrium constant for
adsorption- desorption process and the inhibitor concentration, respectively.
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Ci(mg- \-1)
Figure 9. Langmuir adsorption plots for N80 steel in 3wt% NaCl solution at 298K in presence of
different concentrations of (A) histidine and (B) histidine dimer.

The linear relationships of C/& vs. C are depicted in Fig. 9. The linear correlation coefficients
of the fitted data were 0.9976 and 0.9994, respectively. This confirms that the adsorption of histidine
and the histidine dimer on the N80 surface obeys the Langmuir adsorption isotherm model[52]. The
value of K for histidine and the histidine dimer approach 1.2501x10% and 2.6497x10", respectively.
The adsorption-desorption equilibrium constant Kugs was employed to evaluate the standard Gibbs free
energy (462, of adsorption through Eq. (8).

AGY 3. = —RTIn(55.5K.4.) (8

Where R represents the universal gas constant (8.314J-mol™K™), T is the temperature (298K)
and 55.5 mol-L is the molar concentration of water in the solution.

Generally, the value of 4G°s was below 20 kJ-mol™, which corresponded to physisorption,
and when beyond 40 kJ-mol™, the adsorption was dominated by chemisorption resulting from the
coordination of the corrosion inhibitor with the metal [53]. The values of 4G°s for histidine and the
histidine dimer were -33.32 kJ-mol™ and -35.18 kJ-mol™, respectively. This illustrated that the
histidine and histidine dimer adsorbed on N80 steel through both physisorption and chemisorption.

3.7 Quantum chemical calculation methods

The optimized structures of histidine and the histidine dimer and the optimized frontier
molecular orbitals of histidine and the histidine dimer are displayed in Fig 10 and Fig 11. This reveals
that the HOMO of histidine was mainly in the vicinity of the C-H bond and C=0 bond and the LOMO
was near the imidazole ring. The HOMO of histidine dimer occupied an imidazole ring and the LOMO
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was mainly located at the amide bond. This illustrated that histidine and the histidine dimer are
preferentially adsorbed on the metal surface by amide bonds and imidazole rings and form a more
stable and more compact protective layer to block corrosion and further decrease the occurrence of

corrosion.

Figure 11. The frontier molecular orbitals (HOMO and LUMO) for optimized Histidine(a) and
Histidine dimer(b) molecules.

Table 5. Quantum chemical parameters calculated using the Gaussian 09 program package with
B3LYP/6-31 G (d, p) basis set for Histidine and Histidine dimer

Total |
Inhibitor ORI EMETAY (@ €V) EwmoleV) 7(eV)  AE(ev) p(Debye) AN

u.)

Histidine -548.6 6.7 -9.4 x10 5.2 6.6 3.4 5.4x107
Dimer -1021.5 -6.4 -5.8x107? 4.8 6.3 3.3 6.0x107"
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The calculated Exomo, Erumo, n, 28 1 and an values are given in Table 5. The an values
represent the direction of electron transfer (when an<0, electron transfer occurs from the Fe surface to
the molecule, not from the molecule to the Fe surface)[54]. According to previous studies[55], when an
is less than 3.6, the inhibition efficiency increases with increased electron-donating capability of the
metallic surface inhibitor. As shown in Table 5, the an of investigated inhibitors is less than 3.6 and
positive, indicating that the inhibitor molecules can provide electrons to form a coordinate bond on the
metal surface. However, the AN value of the histidine dimer is slightly greater than that of histidine,
which implied that the histidine dimer has a greater ability to donate electrons to the metal surface
[56]. The dipole moment () is another index that is mainly used to predict the direction of the
inhibition of the corrosion process .Chemical hardness (») is associated with selectivity, which can
measure the capacity of an atom to prevent charge transfer. Eqomo is related to the power of the
molecule to provide electrons. A high Enomo reveals that the molecule tends to donate electrons and
accept a molecule’s LUMO orbital.

Table 5 shows that all Enomo values were negative. Moreover, Arslan [57] indicated that the
negative Enomo values were evidence of physical adsorption, and low E ymo Values suggested that the
electron receptiveness of the molecule was very high. The histidine dimer had a lower E_ ymo than
histidine (Table 5). The energy gap (ag) and the value difference of Epomo and E umo (2= ELumo-
Exomo) are important parameters to determine the reactivity of a molecule. In comparison, the ae in
Table 5 showed that the values of the histidine dimer were lower than those of histidine, which
revealed that the histidine dimer is adsorbed on the steel surface more strongly than histidine.
Therefore, the above results are in agreement with the empirical findings.

4. CONCLUSION

Histidine dimmers were successfully synthesized and could adsorb on the N80 steel surface and
hinder anodic and cathodic reactions in 3% NaCl solution. At the same time, the inhibition efficiency
of the dimer was better than that of histidine according to weight loss measurements. At the
concentration of 250 mg/L histidine dimer, the inhibition efficiency of the histidine dimer could reach
a maximum of 94.09%. According to electrochemical experiments, histidine and the histidine dimer
were considered mixed-type corrosion inhibitors with a predominantly cathodic action. The analysis of
the consequences of the surface morphology and elemental composition of corroded N80 steel by
Scanning Electron Microscopy (SEM), energy disperse spectrometry (EDS) and X-Ray Photoelectron
Spectroscopy (XPS) further certified that histidine and the histidine dimer adsorbed and formed a
protective layer on the carbon steel surface in the 3% NaCl solution, which isolated the active sites and
impeded the occurrence of corrosion. The adsorption of histidine and the histidine dimer was
confirmed to follow the Langmuir isotherm model. Comparing the inhibition effectiveness of the
histidine dimer and histidine by quantum chemical calculation methods revealed that their inhibition
behaviour was closely related to orbital energies (Enqomo and Eiumo), energy gap (ag), dipole moment,
and the fraction of electrons transferred. The results showed that the histidine dimer exhibits a better
inhibition performance than histidine.
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