International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Synthesis of LiFePO₄/C with Fe₃O₄ as Iron Source by High Temperature Ball Milling

Qing Zhao^{1,2}, Xuetian Li^{2,*}, Zhongbao Shao², Binshi Xu², Chengjun Liu^{1,2}, Maofa Jiang^{1,2}, Ron Zevenhoven³, Henrik Saxén³

¹ Key Laboratory for Ecological Metallurgy of Multimetallic Minerals (Ministry of Education), Northeastern University, Shenyang 110819, China

² School of Metallurgy, Northeastern University, Shenyang 110819, China

³ Thermal and Flow Engineering Laboratory, Åbo Akademi University, Åbo/Turku 20500, Finland *E-mail: <u>xuetian.li@163.com</u>

Received: 3 November 2017 / Accepted: 3 January 2018 / Published: 5 February 2018

LiFePO₄/C cathode material was prepared with Fe₃O₄ as iron source by a high temperature ball milling (HTBM) method and the effects of milling temperature were experimentally investigated in this work. The results indicated that high milling temperature improved the crystallinity of LiFePO₄, but that an unfavorable crystal agglomeration and the phase transformation from LiFePO₄ into LiFeP₂O₇ could occur when the temperature becomes too high. LiFePO₄/C synthesized by HTBM at 650°C exhibited the optimal electrochemical performance: the initial discharge capacities were 152.7, 146.6, 140.3, 130.0, 119.1 and 108.3 mAhg⁻¹ at rates of 0.5, 1.0, 2.0, 5.0 and 10C, respectively; after 50 cycles, the capacities of LiFePO₄/C sample were 147.0, 135.0, 126.4, 115.4, 105.6 and 95.3 at rates of 0.1, 0.5, 1.0, 2.0, 5.0 and 10C, and their capacity retention were 96.3%, 92.1%, 90.0%, 88.8%, 88.7% and 88.1%, respectively. No obvious capacity decay was observed demonstrating the excellent electrochemical performance of the product prepared by this work.

Keywords: LiFePO₄/C; Fe₃O₄; High temperature ball milling method; Electrochemical performance

1. INTRODUCTION

The electrochemical performance requirements and standards for batteries have rapidly become more stringent and demanding with the fast development of industry and applications in recent decades. Li-ion batteries have attracted more attention and are regarded to be an excellent choice because of attractive characteristics such as high operating voltage, high particle density, long cycle life, low self-discharge, and no memory effect [1]. Olivine-type LiFePO₄ is widely seen as a promising material for a Li-ion battery due to its high capacity (theoretically around 170 mAhg⁻¹), stable charge/discharge platform, low cost, environmental benignity and cycling stability [2-6]. To overcome the drawbacks of low electric conductivity and low lithium ion diffusion rate of the LiFePO₄ [7, 8], the material is usually coated with carbon [9, 10] or doped with some metal iron [11, 12].

Many methods, including high temperature solid phase methods [13,14], carbothermic reduction [15], co-precipitation [16,17], hydrothermal methods [18], microwave methods [19], sol-gel methods [20, 21], spray-pyrolysis [22] and emulsion drying methods [23] can be used to synthesize the LiFePO₄, although the product purity, production cost and efficiency are still unsatisfactory for industrial scale manufacture. A method of high temperature ball milling (HTBM) using a high-temperature ball-mill was employed in our earlier study [24], by which advanced materials can be prepared in an economical and efficient way [24-26].

Iron sources have a significant effect on the performance of LiFePO₄/C. The relatively high cost of Fe^{2+} raw material limits its industrialized application, and Fe^{3+} raw material requires large numbers of reducing agent. Therefore, Fe_3O_4 is regarded to be a promising iron sources to synthesize the LiFePO₄/C.

In this work, LiFePO₄ powder was prepared by the HTBM method with Fe₃O₄ [27], and the effects of milling temperature (600°C, 650°C, 700°C and 750°C) on crystallization behavior, phase transformation, and electrochemical properties of LiFePO₄/C were investigated.

2. EXPERIMENTAL

2.1. Preparation LiFePO₄/C

Analytical grade reagents including lithium dihydrogen phosphate (LiH₂PO₄), glucose monohydrate (C₆H₁₂O₆·H₂O) and magnetite (Fe₃O₄) were used as raw materials to produce a precursor for LiFePO₄/C. A mass of 1.2mol lithium dihydrogen phosphate and 45.5 g glucose monohydrate (mass ratio of LiFePO₄-to-C was 100:5) were dissolved in 250mL deionized water, after that 0.388mol magnetite with a molar ratio of $n_{\text{Li}}:n_{\text{Fe}} = 1.03:1$ [28] was added into the solution, which was agitated for 4 h for intensive mixing. The precursor for LiFePO₄/C was obtained after drying the product slurry at 120°C for 12h. The precursor was poured into a jar with some milling balls at a ball-to-powder mass ratio of 15:1 [29] followed by sealing of the mill with a very low rate of injection of pure nitrogen (> 99.99 %). The samples were firstly roasted at 350°C for 1 hour for glucose carbonization, and then heated to the set temperatures (600°C, 650°C, 700°C and 750°C) for 8h. A flow sheet of the process route was given in Fig.1

Figure 1. Flow sheet of the process route

2.2 Characterization of LiFePO₄/C

The structure of the LiFeO₄/C product was characterized by X-ray diffraction (XRD, Rigaku D/max-RB). The morphology was determined by scanning electron microscopy (SEM, HITACHI S-3000H) analysis, and the coating of carbon on LiFePO₄ was studied by transmittance electron microscopy (TEM, JEM-2100F) analysis.

2.3. Electrochemical Characterization

For the electrode preparation, LiFeO₄/C powder, carbon black and polyvinylidene fluoride (PVDF) binder were weighted with the mass ratio of 80:10:10 and mixed, followed by adding some N-methyl pyrrolidone (NMP), giving rise to an electrode slurry. The electrode slurry was coated on an aluminum foil and was then heated at 110° C under vacuum for 12 h, the coated Al foil was cut into electrode disks (CR14 mm), which was used as an anode in the button battery assembling process that was conducted in an argon filled glove box. A lithium plate (CR16 mm) was used as the anode, and Celgard 2400 porous polypropylene screen was used as a membrane, 1 M LiPF₆/EC+DEC+EMC (1:1:1 in volume) as liquid electrolyte in the battery, respectively.

Battery-testing system (Neware Co., Ltd., China) was used to test the cycle charge-discharge behavior for button battery product at different rates from 2.5 to 4.2V (1C equals to 170mAhg⁻¹). The electrochemical impedance spectra (EIS) measurement was carried out on a CHI660E electrochemical work-station from 0.1HZ to 100 KHZ with amplitude of 5 mV. The cyclic voltammetry (CV) test was

performed using CHI660E electrochemical work-station at a scan rate of 0.5 mV \cdot s⁻¹ at room temperature.

3. RESULTS AND DISCUSSION

3.1. Crystallization behavior and phase transformation

Fig. 2 shows the XRD patterns of LiFePO₄/C synthesized at the milling temperatures of 600, 650, 700 and 750°C for 8 h by HTBM. Obvious diffraction peaks of LiFePO₄ (olivine structure) were found in the four patterns, which are well indexed to an orthorhombic, *Pnmb* space group (JCPDS Card NO. 40-1499). Some LiFePO₄ was produced at 600°C HTBM but the synthesis reaction was incomplete, which was concluded from the co-existence of diffraction peaks of LiFePO₄ and intermediate Li₃PO₄. When the ball milling temperatures were 650 and 700°C, the diffraction peaks of Li₃PO₄ disappeared. Furthermore, some LiFeP₂O₇ was generated when the ball milling temperature reached 750°C as a result of the condensation of LiFePO₄, causing a decrease of conversion into LiFePO₄. The intensity of the diffraction peaks of LiFePO₄ was enhanced when the milling temperature increased from 600 to 750°C, showing the strong effect of the heating on the crystallinity of the LiFePO₄ in the milling process.

Figure 2. XRD patterns of samples prepared at different milling temperatures (600-750°C)

SEM images of the products prepared at the milling temperatures are shown in Fig. 3. Spherical LiFePO₄/C particles were obtained at the four milling temperatures, and a majority of the grain sizes of the powders were around 0.5 μ m and often smaller. When the HTBM was conducted at 600°C the product had lower crystallinity, agreeing with the results of XRD analysis. The crystallinity increased and the grain size decreased when increasing the milling temperature from 600°C to 750°C, suggesting

that a high temperature promotes crystal growth and grain purity. However, a severe crystal agglomeration phenomenon occurred when the ball milling process was performed at 750°C, which also has a negative effect on the electrochemical performance of the LiFePO₄/C material. Therefore, the optimal milling temperature range for preparing fine LiFePO₄/C powder obtained in the current study is in the range of 650-700°C, and the following investigations of the effect of milling duration on the LiFePO₄/C product were therefore carried out at 650°C.

Figure 3. SEM images of samples prepared at different milling temperatures (600-750°C)

3.3. Coating results

In order to study the results of the coating of carbon on the LiFePO₄, TEM analysis was conducted on the product prepared by HTBM at 650°C for 8h, with an example presented in Fig. 4. It could be clearly observed that some carbon (dark color) has uniformly coated the surface of the LiFePO₄ particles, and other carbon (light color) combined with the LiFePO₄/C clusters giving rise to a conductive network. Researchers have reported that the carbon films can inhibit the growth of the covered LiFePO₄ crystal and improve the electrical conductivity of the LiFePO₄ particles, which is very beneficial for obtaining a high performance LiFePO₄/C cathode material [30, 31].

Figure 4. TEM image of the sample prepared by HTBM at 650°C

3.4. Electrochemical performance

Fig. 5 (a) shows charge/discharge curves of the batteries with LiFePO₄/C cathode materials that prepared by various temperatures at 0.1C-rate from 2.5 to 4.2 V (Li^+/Li). The initial discharge capacities of samples were 119.8, 152.7, 144.5 and 133.7mAhg⁻¹ at 0.1C-rate, respectively.

Figure 5. (a) Charge/discharge curves and (b) cycling performance at 0.1C-rate of LiFePO₄/C prepared at different temperatures

Fig.5 (b) shows the cycling performances of LiFePO₄/C prepared with various ball milling temperature at 0.1C-rate. After 50 cycles, the discharge capacities of the samples were 97.6, 147.0, 128.7 and 118.8 mAhg⁻¹, and their capacities retention were 81.5, 96.3, 89.0 and 88.8%, respectively. It could be found that the milling temperature had a significant on the capacity of battery. The sample which was synthesized at 650°C had the high purity and crystallinity of the cathode material (cf. Fig. 1). On the basis of the XRD and SEM results, the explanation of this finding is proposed as follows: when the milling temperature was 600°C, the crystallinity of the product is insufficient compared with that of 650°C, so its capacity is relatively lower, while when the milling temperature were increased to 700°C and 750°C, the crystal agglomeration became serious limiting the electrochemical performance of the LiFePO₄/C. Therefore, 650°C is the optimal milling temperature to prepare of LiFePO₄/C cathode materials.

Fig. 6 (a) provides the charge/discharge curves of the button battery with a LiFePO₄/C cathode material that prepared at 650°C at various currents. Its initial discharge capacities were 146.3, 140.4, 130.0, 119.1 and 108.3mAhg⁻¹ at the rates of 0.5, 1.0, 2.0, 5.0 and 10C, respectively. LiFePO₄/C sample prepared at 650°C for 8 h exhibited an excellent rate performance.

Fig. 6 (b) shows the cycling performances of LiFePO₄/C cathode material that prepared at 650 °C for 8 h. After 50 cycles, the discharge capacities of the sample were 135.0, 126.4, 115.4, 105.6 and 95.3 mAhg⁻¹ at rates of 0.5, 1.0, 2.0, 5.0 and 10C, and their capacity retentions were 92.1%, 90.0%, 88.8%, 88.7% and 88.1%, respectively. No significant capacity decay was observed demonstrating the excellent electrochemical performance of the product prepared with Fe₃O₄ as iron source by the high temperature ball milling method.

Figure 6. (a) Charge/discharge curves and (b) rate cyclic performance of the button battery with a LiFePO₄/C cathode material that prepared for 650 °C for 8 h at various currents

As shown in Fig.7 (a), The Nyquist plots for all four samples were composed of a concave semicircle in the high mid-frequency region and a straight line in the low frequency range. The semicircles were related to the charge transfer resistance of lithium ions at the electrolyte interface [32]. The detailed results of these samples were summarized in Table 1.

The initial R_s of the four electrodes are nearly the same (Table 1). However, the LiFePO₄/C sample synthesized at 650°C has a smallest charge-transfer resistance (99.72 Ω) than other samples, meaning that the polarization of the sample synthesized at 650°C was less than that of others. This phenomenon could be attributed to the homogeneous particle distribution and thin carbon coating layer, which could improve the electrical conductivity. The lithium ion diffusion coefficient (D_{Li} , cm²s⁻¹) of the electrodes was calculated by equation (1)

$$D_{\rm Li} = R^2 T^2 / (2A^2 n^4 F^4 C^2 \sigma^2) \tag{1}$$

where *R* is the gas constant (8.314JK⁻¹mol⁻¹), *T* is the room temperature(298K), *A* is the surface area of the electrode (1.539×10⁻⁴ m²), *n* is the number of the electrons per molecule attending the electronic transfer reaction is 1, *F* is the Faraday constant (96500 Cmol⁻¹), *C* is the concentration of lithium ion in LiFePO₄ electrode, which is 6.339×10^3 molm⁻³ here, σ is the slope of the line $Z' \sim \omega^{-1/2}$ which can be obtained from Fig.7 (b).

Figure 7. (a) Nyquist plots and (b) the relationship between Z' and square root of frequency $(\omega^{-1/2})$ in the low-frequency region of LiFePO₄/C samples obtained with the different synthesis temperatures

 Table 1. The simulation results of electrochemical impedance

Milling temperature (°C)	$R_{s(}\Omega)$	$R_{ct(}\Omega)$	σ
600	2.41	260.35	134.82
650	2.95	99.72	49.25
700	2.67	138.11	62.63
750	2.30	177.12	107.93

Figure 8. The relationship between lithium ion diffusion coefficient and synthesis temperatures

As shown in Fig.8, the calculated D_{Li} of sample synthesized at 650°C was 1.54×10^{-11} , while that of synthesized at 600, 700 and 750°C were only 2.05×10^{-12} , 9.49×10^{-12} and 3.19×10^{-12} . The reasons of these phenomenons are attribute to the smaller primary particle and more subtle pore structure of sample prepared at 650°C. Experimental results demonstrated that the LiFePO₄/C synthesized by high temperature ball milling at 650°C possesses excellent electrochemical performances, and the Fe₃O₄ is a suitable iron source for LiFePO₄/C production.

LiFePO₄/C products were synthesized by different methods and the related electrochemical data were summarized in Table 2. It was reported that the initial discharge capacity of the LiFePO₄/C synthesized by solid-state reaction using Li₂CO₃, NH₄H₂PO₄, FeC₂O₄·2H₂O and DEG as raw materials was 58 mAhg⁻¹ at 0.1C-rate [14], and that of the samples prepared via carbothermic reduction using LiH₂PO₄, Fe₂O₃ and Super P carbon as raw materials was 125 mAhg⁻¹ at 0.35C-rate [15]. As for the hydrothermal method, the initial discharge capacities of samples reached 157, 140, 130, 114 and 98 mAhg⁻¹ at the rates of 0.2, 1.0, 2.0, 5.0 and 10C, respectively [18]. When sol-gel route method was used to synthesize LiFePO₄/C with C₂H₃LiO₂, C₄H₆FeO₄, H₉N₂O₄P and citric acid as raw materials, the initial discharge capacity of the sample was reported to be 133mAhg⁻¹ at 0.1C-rate [20].

In this work, LiFePO₄/C powders were prepared by HTBM with Fe₃O₄, LiH₂PO₄ and C₆H₁₂O₆·H₂O as raw materials, and the initial discharge capacities were 152.7, 146.6, 140.3, 130.0, 119.1 and 108.3 mAhg⁻¹ at rates of 0.5, 1.0, 2.0, 5.0 and 10C, respectively. After 50 cycles, the capacities were 147.0, 135.0, 126.4, 115.4, 105.6 and 95.3 mAhg⁻¹ at rates of 0.1, 0.5, 1.0, 2.0, 5.0 and 10C, showing an excellent electrochemical performance.

Compared with LiFePO₄/C synthesized using different iron sources , $Fe^{2+}raw$ material is relatively high cost and limits its industrialized application, $Fe^{3+}raw$ material need large numbers of reducing agent. Fe₃O₄ as iron source is low-cost and easily-available, high temperature ball milling method is simple eco-friendly green process.

Synthesizing method	Raw materials	Rate canacity (mAh g^{-1})	References
High temperature ball milling	$Fe_{3}O_{4};$ $LiH_{2}PO_{4};$ $C_{6}H_{12}O_{6}\cdot H_{2}O$	152.7 (0.1C); 146.3 (0.5C); 140.4 (1.0C); 130.0 (2.0C); 119.1 (5.0C); 108.3 (10C)	As prepared
Solid-state reaction	$\begin{array}{c} \text{Li}_2\text{CO}_3;\\ \text{NH}_4\text{H}_2\text{PO}_4;\\ \text{FeC}_2\text{O}_4{\cdot}2\text{H}_2\text{O};\\ \text{DEG} \end{array}$	58 (0.1C)	[14]
Carbothermic reduction	$LiH_2PO_4;$ $Fe_2O_3;$ Super P carbon	125 (0.35C)	[15]
Hydrothermal method	FeSO ₄ ·2H ₂ O; H ₃ PO ₄ ; LiOH·H ₂ O; Grapheme	157 (0.2C); 140 (1.0C); 130 (2.0C); 114 (5.0C); 98 (10C)	[18]
Sol-gel route	$C_2H_3LiO_2;$ $C_4H_6FeO_4;$ $H_9N_2O_4P;$ Citric acid	133 (0.1C)	[20]

Table 2. Comparison of LiFePO₄/C prepared by different synthesis methods

4. CONCLUSIONS

In this work, LiFePO₄/C was produced with Fe₃O₄ as iron source by high temperature ball milling method. The effects of milling temperature on the LiFePO₄/C were investigated. Experimental results showed that increasing milling temperature from 600 to 750°C improved the crystallinity of LiFePO₄, while a severe crystal agglomeration phenomenon and the phase transformation from LiFePO₄ into LiFeP₂O₇ occurred when the temperature reached 750°C. Some button batteries were assembled with the high temperature ball milling products as a cathode material, and the electrochemical performance results indicated that the LiFePO₄/C synthesized at milling temperature of 650°C exhibited the optimal electrochemical performance.

ACKNOWLEDGMENTS

The authors gratefully acknowledge supports by the National Natural Science Foundation of China (No. 51704068), the National Key R&D Program of China (No. 2017YFC0805100), the China Postdoctoral Science Foundation (No. 2017M610184), and the Postdoctoral Foundation of Northeastern University (No. 20170305).

References

1. C.W. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc., 133 (2011) 2132.

- 2. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochem Soc., 144 (4) (1997) 1188.
- 3. A.K. Padhi, K.S. Naanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, *Electrochem Soc.*, 144 (5) (1997) 1609.
- 4. M. Vujkovic, D. Jugovic, M. Mitric, I. Stojkovic, N. Cvjeticanin, S. Mentus, *Electrochim. Acta*, 109 (2013) 835.
- 5. M. Vujkovic, I. Stojkovic, N. Cvjeticanin, S. Mentus, *Electrochim. Acta*, 92 (2013) 248.
- 6. X. Zhi, G. Liang, L. Wang, J. Power Sources, 189 (2009) 779.
- N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources, 97-98 (1-2) (2001) 503.
- 8. M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics, 148(3-4) (2002) 283.
- 9. Y. Lin, M.X. Gao, D. Zhu, X.F. Liu, H.G. Pan, J. Power Sources, 184 (2008) 444.
- 10. G.H. Qin, Q.Q. Ma, C.Y. Wang, Electrochim. Acta, 115 (2014) 407.
- 11. C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, J. Power Sources, 193 (2009) 841.
- 12. J. Xu, G. Chen, Y.J. Teng, Solid State Communications, 147(9-10) (2008) 414.
- 13. P. P. Prosini, M. Carewska, M. Pasquali, Solid State Ionics, 286 (2016) 66.
- 14. M. Singh, B. Singh, M. W. Porada, J. Electroanal. Chem., 790 (2017) 11.
- 15. R. P. Rao, M.V. Reddy, S. Adams, B.V.R. Chowdari, Mater. Res. Bull., 66 (2015) 71.
- 16. Y.M. Zhu, S.Z. Tang, H.H. Shi, H.L. Hu, Ceram. Int., 40 (2) (2014) 2685.
- 17. S.W. Oh, H.J. Bang, S.T. Myung, Y.C. Bae, S.M. Lee, Y.K. Sun, J. Electrochemical Soc., 1556 (1) (2008) A414.
- 18. F. Fathollahi, M. Javanbakht, H. Omidvar, M. Ghaemi, J. Alloys Compd, 627 (2015) 146.
- 19. Z. Huang, P.F. Luo, D.X. Wang, J. Phys. Chem. Solids, 102 (2017) 115.
- 20. A. Mat, K. S. Sulaiman, A. K. Arof, Ionics, 22 (2016) 135.
- 21. M. Y. Gao, N.Q. Liu, Z.B. Li, W.K. Wang, C.M. Li, H. Zhang, Y.L. Chen, Z.B Yu, Y.Q. Huang, *Solid State Ionics*, 258 (2014) 8.
- N.A. Hamid, S. Wennig, S. Hardt, A. Heinzel, C. Schulz, H. Wiggers, J. Power Sources, 216 (2012) 76.
- 23. D. Jugovic, M. Mitric, M. Kuzmanovic, N. Cvjeticanin, S. Markovic, S. Skapin, D. Uskokovic, *Powder Technology*, 219 (2012) 128.
- 24. Q. Zhao, Z.B. Shao, C.J. Liu, M.F. Jiang, X.T. Li, R. Zevenhoven, J. Alloys Compd., 607 (10) (2014) 118.
- 25. Z.B. Shao, Q.W. Hao, Z.C. Shao, K.R. Liu. High energy ball mill. China: CN101003024, 2006.
- 26. P.Q. Jia, Z.B. Shao, K.R. Liu, Material Letters, 125 (2014) 218.
- 27. X.T. Li, Z.B. Shao, K.R. Liu, Q. Zhao, G.F. Liu, B.S. Xu, Colloids Surf., A, 529 (2017) 850.
- 28. X.T. Li, Z.B. Shao, K.R. Liu, Q. Zhao, G.F. Liu, B.S. Xu, J. Electroanal. Chem., 801 (2017) 368.
- 29. L.Y. Jia, Z.B. Shao, Q. Lü, Y.W. Tian, J.F. Han, Ceramics International, 40 (2014) 739.
- 30. Y. Lin, M.X. Gao, D. Zhu, X.F. Liu, H.G. Pan, J. Power Sources, 184 (2008) 444.
- 31. G.H. Qin, Q.Q. Ma, C.Y. Wang, Electrochim. Acta, 115 (2014) 407.
- 32. D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, S. Fujitani, J. *Electrochem. Soc.*, 154 (2007) A253.

© 2018 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).