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In recent years, many researchers have developed techniques for the production of new nanostructured 

materials. The present work focused on the development of an environmentally friendly synthesis 

route with excellent catalytic properties that is; an alternative to the synthesis of nanoparticles 

supported on graphene oxide (GO), and it provides significant reduction in secondary waste. This 

method was designed for in situ reduction of highly dispersed Pd nanoparticles on the surface of GO 

for use in catalytic applications. X-ray diffraction measurements determined that the method yielded 

Pd mainly in the metallic state. Electrochemical characterization by cyclic voltammetry measurements 

showed that the increased crystallinity of Pd improved the exposure of the active electrochemical sites 

that carry out the oxygen reduction reaction (ORR). These results allow the design and control of the 

in-situ growth of nanostructured materials. 
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1. INTRODUCTION 

The oxygen reduction reaction (ORR) is involved in a number of electrochemical processes, 

such as metal corrosion, water electrolysis, electrochemical energy conversion/storage, and petroleum 

cracking. ORR has attracted increasing attention for exploring alternative means of energy utilization 

and enhanced energy conversion efficiency. Noble metal catalysts are frequently used for ORR [1], 

[2], among which Pd has attracted significant attention in recent years. Most Pd catalyzed reactions 
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exhibit structural sensitivity, implying that their activity and selectivity depend on the arrangement of 

surface atoms [3], [4]. This has motivated the search for methods to increase the surface area of the 

nanoparticles and control their size and morphology by means of their immobilization on different 

substrates or supporting materials. 

Graphene oxide (GO) is one of the most promising supporting materials for the Pd catalysts 

[5]. It possesses a two-dimensional nanostructure with oxygen functional groups and it is widely used 

in many electrochemical applications due to its superior properties such as good biocompatibility, high 

surface area, high mechanical strength, and low production cost. As a good supporting substrate, GO 

can provide extraordinary modification to active species. Hybridization of noble metal nanoparticles 

with GO is an effective strategy for enhancing the functionality of nanocatalysts [6],[7]. 

Unfortunately, most catalysts synthesis methods suffer from various drawbacks such as the use 

of expensive, toxic, and hazardous reagents, tedious work-up, low yields, lack of selectivity, and 

environmental pollution caused by the formation of side products [8], [9], [10]. Therefore, it is 

desirable to develop cheaper and more environmentally friendly methods to produce nanocatalysts or 

nanocomposites for catalytic applications. 

In this study, a simple reduction method with high-efficiency, and low production of secondary 

waste was employed to synthesize highly dispersed Pd nanoparticles on graphene oxide (GO) sheets. 

This method is based on the chemical reduction of palladium chloride (PdCl2) in the presence of GO. 

The prepared GO-Pd catalyst was analyzed using various characterization techniques. The catalytic 

response of the electrode prepared with GO-Pd was measured by cyclic voltammetry. 

 

 

 

2. EXPERIMENTAL 

2.1. Preparation of GO. 

GO was prepared from natural powder-graphite by acid exfoliation in reflux (70 ml H2SO4: 30 

ml HNO3) for 72 h. It was then washed with deionized water until pH of 7 was obtained. 

 

2.1. Preparation Catalyst GO-Pd. 

The GO-Pd catalyst was fabricated as follows: a mixture containing 0.5 g of GO was sonicated 

in 10 ml PdCl2 for 30 min. It was subsequently dried at 120°C on a quartz substrate with the diameter 

of 10 cm, after which a film was obtained. The film was heated in a tubular furnace at 450°C in a 

reducing atmosphere for three different times (40, 60, and 120 min) (Table 1). To determine the 

homogeneity of the Pd nanoparticles, two different zones were analyzed; the central zone (A) and the 

edges (B) in the substrate (Figure 1). Table 1 shows the sampling zone and experimental conditions. 

The GO-Pd sample was characterized by scanning electron microscopy (SEM), thermogravimetric 
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analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic 

voltammetry. 

To minimize secondary residues, Hummers’ method was not used in our GO synthesis. In 

addition, the use of a 90:10 N2:H2 reducing atmosphere minimizes the generation of waste. 

 

Table 1. Experimental condition. 

 

Sample Sampling Solution Heat 

  zone Pd [M] time (min) 

GO -------- 0 0 

40-A Center 0.001 40 min 

60-A Center 0.1 60 min 

60-B Edges 0.1 60 min 

120-A Center 0.1 120 min 

120-B Edges 0.1 120 min 

 

 

 
 

Figure 1. Schematic diagram of the method for the in-situ synthesis of GO-Pd. 

 

2.3 Characterization 

The samples were analyzed by scanning electron microscope (SEM). The images were 

obtained using an FEI, Model Nova NanoSEM 200 instrument in the STEM mode (bright field). 

Powder X-ray diffraction (XRD) patterns were recorded with a Panalytical model Empyrean 

diffractometer using a powder X-
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from 5 to 90° at room temperature. X-ray photoelectron spectroscopy (XPS) was obtained with a 

Thermo Scientific Escalab 250Xi spectrometer using monochromatized Al K radiation (1486.6 eV). 

The GO/Pd weight ratio was analyzed by thermogravimetric analysis (TGA) and recorded using an 

SDT Q 600 TA Instruments equipment in the range of 35°C-1000°C in air. The electrochemical tests 

were carried out in a cell of three electrodes on an AUTOLAB potentiostat/galvanostat device and a 

rotor brand Pino. 

 

 

 

3. RESULTS AND DISCUSSION 

 
 

Figure 2. Bright field STEM micrographs of a) GO, b) 40-A, c) 60-A, d) 60-B, e) 120-A, f) 120-B 

samples. 

 

Figure 2 shows the images of the GO and GO-Pd obtained by STEM. Examination of Figure 2 

shows that multilayer GO with disordered and overlapped sheets is present that are similar, to the 

sheets observed previously in this type of materials [11], [12]. Sample 40-A (b) showed Pd 

nanoparticles, with a spherical morphology and the average particle size of 7 nm, highly dispersed on 

the GO surface. In the samples at 60 and 120 min, the average particle size was not affected by the 
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treatment time. However, the position of the Pd particles in the growth substrate was affected by the 

material accumulation at center (A sampling zone), as seen in Figures 2c-f, showing the average sizes 

of ~25 nm at the center, and ~13 nm in the edges (B sampling zone), that can be attributed to the 

effects of segregation resulting the concavity of the growth substrate. 

A smaller particle size was obtained for sample 40-A (0.001 M), suggesting that the 

concentration also modifies the final diameters of the obtained nanoparticles. The diameter 

distributions presented below the micrographs in Figure 2 show the highest values for 0.1 M 

concentration (~13 nm at edges and ~25 nm at center). Therefore, these results demonstrate that this 

synthesis method allowed us to obtain nanoparticles with different sizes and narrow distributions by 

controlling the concentration and localization zone (A or B) in the growth substrate of the 

nanoparticles. 

Thermogravimetric analysis under air atmosphere was used to determine the mass percentage 

of the Pd deposited on the GO surface. It was found that 9.64 wt% of impurities were present, and this 

GO residue which remained at 1000°C could be attributed to the impurities present in the pristine 

graphite (as demonstrated later). The percentage of the Pd was calculated from the percentage of the 

found impurities and considering the stoichiometric ratio of the palladium that the samples exhibit in 

Figure 3 and Table 2. On the other hand, it was found that a higher concentration of Pd precursor 

increases the percentage of the Pd on the GO surface. 

These catalyst exhibited well-defined mass loss, which occurred between 169°C and 627° C for 

GO and 40-A samples, and in the 395°C–627°C for 60-A,B and 120-A, B samples and which is 

attributed to oxidized carbon atoms [13], [14]. Zheng et al. [15], showed that is possible to reduce GO 

by a thermal process in the presence of H2. Hence, increase the stability of GO in the 60-A, B and 120-

A, B samples was due to the partial reduction of GO during the synthesis. This reduction allows the 

reorganization of the graphitic structure [16]. 
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Figure 3. Thermogravimetric analysis of a) GO, b) 40-A, c) 60-A, d)120-B, e)120-A, f) 60-B. 
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Table 2. Thermogravimetric results. 

 

Sample % wt PdO %wt Pd 

40-A 3.38 2.39 

60-A 11.51 10.01 

60-B 16.15 14.04 

120-A 11.51 10.01 

120-B 13.48 11.71 
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Figure 4. X Ray diffraction pattern (left) and XPS spectrum (right) for a) GO, b) 40-A, c) 60-A, and d) 

120-A samples. 

 

The X-ray diffraction (XRD) patterns of GO-Pd (Figure 4), showed a peak approximately 24.3° 

which is a characteristic peak of the (002) plane attributed to the stacked GO [17], [18], that 

corresponds, to the interlayer spacing of 0.352 and 0.357 nm, which were larger than that of the 

graphite powder (0.337 nm); these results were similar to the literature[19], implying the successful 

preparation of GO.  In XRD showed four diffraction peaks at 40.1°, 44.6°, 68.1°, 82.8° and 86.5°, 

which could be indexed as (111), (200), (220), (311) and (222) planes indicating that Pd nanoparticles 

(JCPDSNo. 05-0681) [11] in the 60-A and 120-A catalysts possess a cubic structure [20], [21].  

On the other hand, differences in the diffraction pattern intensities were observed for sample 
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120-A, with higher intensities than for sample 60-A, even though Pd percentages by weight for both 

samples were similar (approx. 10%). This suggests that the treatment time increases the crystallinity of 

the Pd nanoparticles. Additionally, other diffraction patterns were observed with peaks at 26.6°, 21°, 

and 18° corresponding to impurities of pristine graphite, silicate residues and SiO2 (ICDD standard 01-

087-2096). 

XPS was used as the main approach for elucidating the chemical state of Pd (Figure 4.2). The 

analysis of the GO, 40-A, 60-A and 120-A samples showed signals associated with C1s (284.5 eV), 

O1s (532.5 eV), Pd 3p (561 eV), Pd 3d5/2, and Pd 3d3/2 (335.2 and 340.5 eV) [22], as well as the 

presence of SiO2 impurities corresponding to the impurities of pristine graphite that was used in the 

synthesis (155 and 104 eV) (CAS registry No.7631-86-9). A higher Pd peaks intensity was observed 

for samples 60-A and 120-A, in addition to a lower intensity of the same peak for sample 40-A. This is 

in accordance with SEM and TGA results, where a greater percentage of Pd was revealed.  
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Figure 5. Core level XPS spectra for Pd in the samples a) 40-A, b) 60-A, and c) 120-A. 

 

Furthermore, as seen from Figure 5, the binding energies of Pd 3d can be resolved into 3d5/2 

and 3d3/2 doublets caused by spin-orbital coupling [23]. Upon deconvolutions of the spectra, the curves 

indicated pairs of energies for Pd(0) and Pd(II) at 335.2 and 341.1 eV and 336.6 and 349.7 eV, 

respectively [24]. These values were took from previously reported work by Yang et al [25]. The 
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intensities of Pd(0) peaks were larger than those of Pd(II), indicating the major contribution of metallic 

Pd. This is evidence that the precursor (PdCl2) was reduced to the metallic state; additionally, the 

Pd(II) signal suggests that traces of the precursor (PdCl2) were not reduced completely for sample 40-

A. 

The electrochemical tests were carried out in a three-electrode cell. A silver/silver chloride 

(Ag/AgCl) electrode saturated with potassium chloride (KCl) was used as the reference electrode and a 

platinum wire as the counter electrode. The catalytic inks were prepared by ultrasonically agitating a 

mixture composed of 5 mg of catalyst, 625 μl of tridistilled water and 125 μl of Nafion-117 (5 %) for 

30 min. The thin film formed from 10 μl catalytic ink deposited on the vitreous carbon (5 mm 

diameter) of a rotating disk electrode was used as the working electrode, in 0.5 M solution of H2SO4 

prepared with tridistilled water which was used as the electrolyte.  

Cyclic voltammetry measurements were performed after 50 potential cycles between 0-1.2 V 

vs NHE in Ar (99.998%)-saturated acid electrolyte at 50 mVs
-1

.The rotating disk electrode (RDE) 

technique was used under O2 atmosphere (99.99%) in the range of potentials between 0.0-0.8 V vs 

NHE at the scan rate of 5 mV s
-1

 and at different rotation rates (from 100 to 1600 rpm). 
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Figure 6. Cyclic Voltammograms for A) GO and 40-A, B) 60-A, 60-B, 120-A and 120-B. 

 

Cyclic voltammetry measurements for samples 60-A-B and 120-A-B revealed the typical Pd 

signal obtained by catalyzing the ORR in an acidic medium [26], [27], [28], [29]. This signal was 

characterized by the presence of the peaks associated with the hydrogen absorption/desorption 

processes, in the region between 0 and 0.2 V vs NHE (peaks I, and IV); as well as by the presence of 

the peaks attributed to the absorption of oxygen species on the Pd nanoparticles surface, in the range of 

potentials between 0.7 and 1.3 V vs NHE (peak II); and the reduction of these oxygen species-to a 

potential of ~0.59 and 0.61 V vs NHE (peak III) [30] for samples A and B, respectively. The slight 
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shift of 20 mV toward positive potentials in peak III exhibited for catalysts B in comparison to 

catalysts A suggests: 1) a delayed formation of Pd–OH [31]
 
and/or an easier removal of absorbed OH 

(OHads) due to a weaker energy binding between OHads and the surface of catalysts B [31] [32], [33]. A 

high presence and/or a strong adsorption of the hydroxyl species could compete with the adsorption of 

new oxygen molecule and gradually decrease the number of actives sites and consequently reduce the 

kinetic and the catalytic activity for oxygen reduction [34], [35]; based on the above and the fact that 

the catalysts 60-B and 120-B show the particle sizes lower than those of catalysts A (as was seen in 

SEM results), these results could suggest that ORR catalysis is favored to some degree by Pd 

nanoparticles with a smaller diameter. 

On the other hand, sample 40-A showed the electrochemical signal similar to that shown by 

GO (Figure 6a); the absence of the Pd signal in this sample suggests that a low concentration of this 

metal was deposited on the surface of the support, which is in agreement with the results obtained by 

TGA, where the concentration of Pd of approximately 3% w/w was found; in addition, the absence of 

peaks associated to oxygen species formation/reduction suggests that this sample has poor or no ability 

to catalyze ORR due to low concentrations of Pd; this, is in accordance with other results, where low 

catalytic activities have been reported for catalysts with metal loading lower than 5% w/w [36], [37]. 

An increase in the area of the hydrogen absorption/desorption region was found for the 

catalysts that were subjected to a longer treatment time (Peaks I and IV, 120A-B), suggesting that 

crystallinity significantly increases the exposure of possible active sites for ORR. To corroborate this 

observation, the electrochemical active surface areas (ECSA) were calculated using the following 

equation: 

)1(
LS

Q
ECSA   

where Q is the integration of the charge associated with the desorption of the monolayer of 

hydrogen of the CV curve, L is the mass of Pd deposited on the working electrode, calculated from 

TGA measurements and S (212 mC cm-2) is the theoretical charge required for desorption of one 

monolayer of hydrogen on a Pd surface [27], [38], [39]. Thus, the ECSA values for catalysts 60-A, 

120-A, 60-B and 120-B were 8.63, 14.13, 8.59 and 14.26 m
2
gPd

−1
, respectively. The fact that catalyst 

60-B shows revealed the smallest particle size between catalysts 60A-B and 120A-B catalysts, and 

furthermore, that the catalyst 60-A had showed a particle size and a palladium loading similar to the 

catalyst 120-A, and nevertheless, the catalyst 120-A shows an active area higher than those of catalysts 

60-B and 60-A, demonstrates that the ordering of the Pd atoms in the structure of this type of catalysts 

plays a key role in the exposure of the possible active sites for ORR; namely, the results demonstrate 

that the treatment time increases the crystallinity of the catalysts (as observed in the XRD results), and 

in turn, this increases the ECSA. In addition, oxygen reduction peaks with lower definition or lower 

intensity have been associated with the amorphous nature or a lower activity of the catalyst [40]; 

therefore, the higher current density observed in peak III for the catalysts subjected to 120 min of 

treatment (~1.2 mAcm
-2

), compared to those that received 60 min of treatment (~0.9 mAcm
-2

), 

suggests again that more active sites (associated to a higher crystallinity) is available to catalyze the 
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ORR in catalysts 120A-B. Moreover, the fact that sample 120-A shows a greater number of active sites 

but the same overpotential as that of sample 60-A suggests that the number of active sites increase with 

the treatment time. 

Figures 7 a-d shows the polarization curves measured at several rotating speeds (ω's), which 

were used to construct Koutecky-Levich (KL) plots, j
-1

 vs. ω
-1/2

 (Figure 8A) based on the following 

equation [41]: 

  )2(62.0
1

2
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21111
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

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 ooodk CvnFDnFkCjjj  

The equation (2) can be written as:  

)3(2/1111   wBjj k
,  

where 
oo CvnFDB 6

1
3

2

62.0


 , j is the overall current, jk is the kinetic current, jd is the diffusion-

limiting current, n is the overall number of transferred electrons, F is Faraday’s constant (96,500 

C·mol
-1

), k is the rate constant for oxygen reduction, Co is the bulk O2 concentration in the electrolyte 

(1.13x10
-6

mol·cm
-3

), Do is the diffusion coefficient of O2 (1.8x10
-5

cm
2
·s

-1
), and v is the kinematic 

viscosity of the aqueous 0.5 M sulfuric acid solution (1x10
-2

cm
2
·s

-1
) [42]. 
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Figure 7. RDE voltammetry curves for oxygen reduction obtained in an oxygen-saturated 0.5 M 

H2SO4 solution at rotating speeds in a range of 100-1600 rpm for samples a) 60A, b) 60B, c) 

120A and d) 120B. 
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All catalysts exhibited a KL slope (Table 3) for the ORR calculated at 0.38 V that was similar 

to the theoretical slope (12.91x10
-2

mA·cm
-2

·rpm
-0.5

) for a four-electron transfer process. This result 

suggests that the mechanism of oxygen reduction proceeds mainly via the direct formation of water, as 

described by O2 + 4H
+
 + 4e

-
 <--> 2H2O, and suggests that the reaction mechanism is independent of 

crystallinity or particle size when oxygen reduction occurs on the surface of this type of catalysts.  

 

Table 3. Values of the half-wave potential of O2 reduction (E1/2) vs NHE. 

 

Sample 
B x10

-2 

(mAcm
-2

rpm
-0.5

) 

E1/2 vs NHE 

(V) 

40-A -- -- 

60-A 12.42 0.47 

60-B 13.38 0.50 

120-A 14.23 0.53 

120-B 12.20 0.56 

 

The comparison of j–E curves for O2 reduction at the rotation rate of 1600 rpm is shown in 

Figure 8B. The weak signals and the higher negative shifts in the polarization curves found for the GO 

support and the sample 40-A demonstrate that these samples showed poor or no ability to catalyze 

ORR, as suggested previously (Figure 6). In addition, compared to the 60-A and 120-A catalysts, the 

onset potential of oxygen reduction for 60-B and 120-B catalysts shifted to the more positive 

potentials; this is in accordance with the positive shift of the ORR peaks observed in CV tests, and 

suggests that catalysts B are more actives for ORR than catalysts A [42], [43], [44] and therefore these 

catalysts more readily promoted the four-electron reduction process of oxygen.  
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Figure 7. a) Koutecky-Levich slope plots and b) Linear voltammograms obtained at 1600 rpm, for 

synthesized catalysts.  
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On the other hand, the values of the half-wave potential of O2 reduction (E1/2) increased in the 

following order (table 3):  60A< 120A < 60B < 120B. Based on the ORR onset potential and half-

wave potential values, it can be concluded that catalyst 120B possesses the highest electrocatalytic 

activity for ORR. The main reasons for this highest activity could be assigned as due to 1) the higher 

ordering (crystallinity) which increases the number of the available active sites (ECSA) for the ORR 

and 2) to the lower particle size which could be favoring the electronic environmental in each active 

site during oxygen reduction, and which are in agreement with other reports where the crystallinity 

[45], [46], [47], [48] and the particle size [26], [49], [50] have been demonstrated to exert an influence 

on the catalytic activity of the nanoparticles. 

These results demonstrate that a longer treatment time during the growth of Pd on GO is a 

potential alternative approach to increasing the number of exposed active sites, and that precursors 

concentration and growth zone of the nanoparticles are also alternative factors that can be used to 

control the particle size and therefore the overpotentials as well as the ease of ORR catalysis on the 

surface of the Pd nanoparticles. 

 

 

4. CONCLUSIONS 

In summary, GO-Pd catalysts with different size and percentage of the nanoparticles were 

synthesized via an in-situ reduction method. The ORR activities for samples 120-A-B and 60-A-B 

were higher than that for sample 40-A, as revealed by cyclic voltammetry evaluations. Our results 

showed that position at the growth substrate, precursor concentration, and treatment time; are crucial 

parameters for the design and control of Pd nanoparticle synthesis. Concentrations of 0.1 M with 

treatment times of 120 min provided more thermally stable Pd nanoparticles, with a high number of 

electrochemically active sites and slightly lower overpotentials to carry out the ORR catalysis. This 

method of in-situ reduction allows a considerable reduction of the secondary residues, and can be 

applied to other types of precursors for different research areas and especially in catalysis regarding the 

nanoparticles supported in GO. 
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