International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Electrochemical and Corrosion Behavior of 316L Stainless Steel in a CO₂-SO₂-H₂O Mixture

Yong Xiang^{1,2,*}, Chen Li^{1,2}, Zhengwei Long^{1,2}, Canwen Zhang¹, Zhongli Ji^{1,2}

¹ College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
 ² Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, Beijing 102249, China
 *E-mail: <u>xiangy@cup.edu.cn</u>

Received: 15 December 2017 / Accepted: 10 February 2018 / Published: 6 March 2018

Although steel corrosion in a SO₂-containing atmospheric environment has been extensively investigated, its electrochemical behavior still needs to be addressed, especially when it coexists with CO_2 in a carbon capture, utilization and storage system. In this work, electrochemical experiments with 316L stainless steel corrosion in a CO_2 -saturated solution were conducted by adding different amounts of SO₂ to a solution at 25 °C under different pH conditions. The effect of SO₂ on the cathodic reactions of 316L stainless steel corrosion in a CO_2 -saturated solution was investigated by electrochemical methods, including potentiodynamic sweep, linear polarization resistance and electrochemical impedance spectroscopy. The results showed that the presence of SO₂ increased the cathodic limiting current and corrosion rates of 316L stainless steel at the same pH. There was a "second-wave" phenomenon that appeared before the second limiting current and this new "wave" was demonstrated to be related to the direct reduction of both hydrate of SO₂ and bisulfite on the steel surface.

Keywords: CCUS; CO₂; SO₂; cathodic reaction; 316L stainless steel

1. INTRODUCTION

Carbon capture, utilization and storage (CCUS) is regarded as an effective way to reduce CO_2 emissions from emission sources, such as coal-fired power plants and refineries. One CO_2 utilization form is that captured CO_2 is transported to an oil field to enhance oil recovery (EOR) before permanent geological storage, which can compensate for the cost of the capture, transport and storage steps. In coal-fired power plants, NO₂, SO₂, O₂, H₂O and other impurities are inevitably mixed with the captured CO_2 [1, 2]. Impurities in supercritical CO_2 streams pose a huge challenge to the integrity of pipeline equipment during the transport process.

The issue of steel corrosion in supercritical CO₂ environments containing various impurities has already been widely investigated [3-22]. SO₂ is one of the major impurities during the CO₂ capture process and can result in severe corrosion of pipeline steel owing to the formation of hydrate of SO₂ and sulfuric acid. Choi [3] found that when 1% SO₂ was added to a water-saturated supercritical CO₂ system, the corrosion rate of X65 steel increased from 0.38 to 5.6 mm/y, and γ -FeSO₃·3H₂O was observed in product scales, which has poorer protectiveness to the substrate compared to FeCO₃. When O₂ and SO₂ were present together, the corrosion rate of X65 steel reached 7 mm/y. Xiang [4] reported that the addition of 0~2.0% SO₂ in a water-saturated supercritical CO₂ system resulted in a corrosion rate variation of X70 steel from 0.056 to 0.88 mm/y. Hua [6] determined that the addition of SO₂ and O₂ impurities in water-saturated supercritical CO₂ accelerated the uniform corrosion rate of X65 carbon steel from 0.1 mm/y to 0.7 mm/y and localized corrosion became more severe with rising SO₂ concentrations. Although the corrosion behaviors of steels in atmospheric environments [23-25] and in supercritical CO₂ environments with SO₂ impurities have been studied extensively, the electrochemical behaviors of steel corrosion in supercritical CO₂/SO₂ environments still merits further investigation.

Investigation of corrosion behaviors of steels in weak acid environments is currently a hot research topic. Tran [26] evaluated the corrosion behavior of mild steel in carbonic and acetic acid solutions and concluded that carbonic and acetic acid mainly act via a "buffer effect" mechanism: only hydrogen ions were supplied by these weak acids during the cathodic process. Kahyarian [27] also look at the corrosion mechanism of acetic acid and obtained similar results. Zheng [28-31] reviewed the corrosion behavior of pipeline steel in H₂S- and CO₂/H₂S-containing solution, proposing a H₂S "direct reduction" mechanism - the direct reduction of H₂S molecules during the cathodic process [28]: $2H_2S + 2e^- \rightarrow H_2(g) + 2HS^-$ (1)

Recently, Xiang [32] studied the corrosion behavior of valve steel in a CO_2/SO_2 solution and hydrate of SO_2 or bisulfite were considered to be directly involved in the cathodic reaction. However, whether hydrate of SO_2 , bisulfite or both of them are directly reduced during the reactions still needs further verification.

In this work, the corrosion behavior of 316L austenitic stainless steel in a CO_2 -SO₂-H₂O mixture was studied by adding different amount of SO₂ to the test solution under atmospheric pressure in order to validate whether the previous direct reduction mechanism depended on the working electrode material and further determine if hydrate of SO₂, bisulfite or both are directly reduced in the cathodic reaction. Potentiodynamic sweep, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) methods were applied.

2. EXPERIMENTAL PROCEDURE

2.1 Materials and pretreatment

The working electrodes were made of 316L austenitic stainless steel. The chemical composition of this steel was as follows (by wt.%): C, 0.013; Si, 0.07; Mn, 0.06; P, 0.023; Mo, 2.30; Cr, 17.14; Ni, 12.65; S, 0.075 and Fe in balance. During the experiments, the working electrode was machined from this steel and mounted in epoxy resin with a working surface area of 0.78 cm². The working surface was polished with a series of silicon carbide papers progressively up to 600 grit, and

then washed with acetone to remove surface contaminations and dehydrated by absolute ethanol. All working electrodes were dried in a vacuum oven for 24 h before tests. A SO₂ solution (manufactured by Aladdin Ltd.) was employed in the tests, simulating the SO₂ impurity in the CO₂ stream.

2.2 Experimental setup

The experimental setup is illustrated in Figure 1. The experiment was carried out under atmospheric pressure at 25 °C by using a 3 L glass cell. The electrolyte solution was a 1 wt.% sodium sulfate (Na₂SO₄) solution. The electrochemical measurements used a standard three-electrode experimental setup. A saturated calomel (Hg/Hg₂Cl₂) reference electrode was utilized and connected by a Luggin capillary. A platinum plate was used as the counter electrode. The solution pH value was measured with a pH meter (Mettler Toledo, FE20). A potentiostat (Gamry, Reference 3000) was used for electrochemical tests. Before each test, high-purity (99.999 vol.%) N₂ was purged through the solution for at least 2 h to remove oxygen. High-purity CO₂ (99.999 vol.%) was purged through the solution depending on the test condition, and then 100 or 1,000 ppmw of SO₂ was added to the solution at a relatively low flow rate during the test depending on the test conditions. The pH value of solution was adjusted by sulfuric acid (H₂SO₄), sodium hydroxide (NaOH) or sodium bisulfite (NaHSO₃) to the desired value. An exhaust treatment tower was made use of for exhaust gas treatment. All the tests were carried out under static conditions. The detailed test conditions are listed in Table 1.

CO₂; 2. N₂; 3. pH meter; 4. Glass cell; 5. Circulating water bath; 6. Computer;
 7. Potentiostat; 8. Condenser; 9. Induced draft fan; 10. Purifying column

Test No.	Temperature (°C)	pН	CO ₂ partial pressure (bar)	SO ₂ concentration (ppmw)	NaHSO ₃ concentration (ppmw)	
1		1	0.97	1,000		
2		2	0.97	0		
3		2	0.97	100		
4		3	0.97	0	0	
5	25	3	0.97	100	0	
6	25	3	0.97	1,000		
7		4	0.97	0		
8		4	0.97	100		
9		4	0	100		
10		4	0.97	100	26,000	

Table 1. Test conditions

2.3 Methods

Polarization resistance (R_p) was measured by polarizing the working electrode ±10 mV around the open circuit potential (OCP) with a scanning rate of 0.2 mV/s. EIS tests were conducted around the OCP of ±5 mV with a frequency range from 10⁴ to 10⁻² Hz. Potentiodynamic sweeps were carried out to establish the behavior of cathodic reactions with a scanning rate of 0.2 mV/s. The solution resistances were obtained by EIS tests and the polarization curves were corrected accordingly. The corrosion current density (*i_{corr}*) was calculated by Equation (2) [33] and the corrosion rate was obtained according to Equation (3) [34]:

$$i_{corr} = \frac{B}{R_p} = \frac{b_a \times b_c}{2.3 \times R_p \times (b_a + b_c)}$$
(2)

Corrosion Rate (mm/y) =
$$\frac{0.00327 \times i_{corr} (\mu A/cm^2) \times EW (g)}{Density (g/cm^3)}$$
(3)

where b_a is the anode tafel slope in mV/dec and b_c is the cathode tafel slope in mV/dec. *EW* is the equivalent weight in grams. The *B* value was 24 mV/dec, which was determined based on the experimental measurement results.

3. RESULTS AND DISCUSSION

Figure 2 depicts the cathodic polarization curves of 316L stainless steel in a CO₂-saturated solution with and without SO₂ at pH 4.0. When 100 ppmw SO₂ appeared in the CO₂-saturated solution, the cathodic polarization curve shifted to the right, indicating that the addition of SO₂ might promote cathodic reactions. The concentration of SO₂ stands for the concentration of hydrate of SO₂ with one H_2O .

The change of the limiting current may be affected by the diffusion of SO_2 or bisulfite from the bulk to metal surface. The final stage of the cathodic polarization curves were mainly controlled by the

reduction of water. When only 100 ppmw SO₂ was added to 1 wt.% Na₂SO₄ solution without CO₂, the cathodic polarization curve with 100 ppmw SO₂ only was significantly different from the cases with CO₂. It can be speculated that the cathodic reactions in CO₂-saturated solution differ from that with 100 ppmw SO₂ exclusively. The limiting current for the case with only 100 ppmw SO₂ was lower than that with just CO₂. This may indicate that H₂CO₃ and HCO₃⁻ were directly involved in the cathodic reactions that resulted in a higher limiting current than the case with 100 ppmw SO₂ only. These results might also imply that there was a synergistic effect between CO₂ and SO₂.

NaHSO₃ was also used to adjust the solution pH to 4.0 without using NaOH after adding 100 ppmw SO₂ to the CO₂-saturated solution, and the amount of NaHSO₃ was 26,000 ppmw. When a large amount of NaHSO₃ was present, the charge transfer current was further increased and no limiting current was observed in the test potential range. The cathodic process was mainly controlled by the charge transfer process. HSO_3^- ions may be directly involved in the cathodic reaction.

Figure 2. Comparison of polarization curves of 316L stainless steel under different conditions at 25 °C with a pH 4.0 in aqueous solution with saturated CO₂ and 1 wt.% Na₂SO₄.

The cathodic polarization curves of 316L stainless steel in a CO_2 -saturated solution with different amounts of SO_2 at pH 3.0 are portrayed in Figure 3. The cathodic polarization curve of the case with 100 ppmw SO_2 at pH 3.0 also shifted to the right, indicating that SO_2 promoted cathodic reactions. The addition of SO_2 enhanced the charge transfer current and limiting currents and a "second wave" appeared before the second limiting current. This phenomenon is similar to what was seen by Zheng [28] with their work on a H₂S corrosion mechanism. This new "wave" that appeared may be based on the fact that hydrate of SO_2 or bisulfite was directly involved in the cathodic reactions. The previously proposed direct reduction mechanism was [32]:

$$2SO_2 + H_2O + 2e^- \rightarrow H_2 + 2HSO_3^- \tag{4}$$

or:

$$2HSO_3^- + 2e^- \rightarrow H_2 + 2SO_3^{2-} \tag{5}$$

At pH 3.0, the cathodic polarization curves of 316L stainless steel in CO₂-saturated solution with SO₂ involved the direct reduction of hydrate of SO₂ (and/or bisulfite), reduction of H⁺ and H₂O. There were two limiting currents and a "second wave" in the polarization curve for the case with 100 ppmw SO₂ under pH 3.0 conditions. The first limiting current of the polarization curve for the case with 100 ppmw SO₂ is close to the limiting current platform of a CO₂-saturated solution without SO₂, and we deduced that this diffusion current mainly reflects the diffusion of H⁺, H₂CO₃ and HCO₃⁻. The "second wave" reflects the diffusion of SO₂ or bisulfite, besides H⁺, H₂CO₃ and HCO₃⁻. The final stage of the cathodic sweep was the reduction of H₂O.

When 1,000 ppmw SO₂ was added to the CO₂-saturated solution at pH 3.0, the same "secondwave" phenomenon appeared on the cathodic polarization curve, and this curve further shifted to the right. OCP rose with the increase of SO₂ concentration. As the concentration of SO₂ increases, if only hydrogen ions are involved in the cathodic reaction, the charge transfer current should remain the same. As seen, when the amount of SO₂ is elevated, the cathodic polarization curve entirely shifted to the right, which has the same results as the previous study that employed X80CrSiMoW152 valve steel as the working electrode [32]. A similar analysis was also found when analyzing the corrosion mechanism of mild steel in acetic acid [26].

Figure 3. Comparison of polarization curves of 316L stainless steel with different amounts of SO₂ at 25 °C with a pH 3.0 in aqueous solution with saturated CO₂ and 1 wt.% Na₂SO₄.

Figure 4 exhibits the cathodic polarization curves of 316L stainless steel in a CO_2 -saturated solution with and without SO_2 at pH 2.0. The shape of the cathodic polarization curve had no obvious change when SO_2 was present. At pH 4.0, the concentration of H⁺ ions was limited in solution, hence

the direct reduction of hydrate of SO_2 or bisulfite dominated the change of charge transfer current and the limiting diffusion current. At pH 3.0, more hydrogen ions were required and additional H₂SO₄ was added to provide additional H⁺ ions to reach the desired pH. The contribution of H⁺ ions and hydrate of SO₂ or bisulfite to the cathodic reactions was at the comparative level. At pH 2.0, the concentration of H⁺ ions in the solution was high and H⁺ reduction was dominant during the whole cathodic process while 100 ppmw SO₂ played a very small role in cathodic reactions. The limiting current of hydrate of SO₂ or bisulfite was obscured by the limiting current of hydrogen ions.

We also calculated the water chemistry and determined the component concentrations in order to further identify the direct reduction of hydrate of SO_2 or bisulfite based on the following equations:

$$c(SO_2) = \frac{c(HSO_3^-) \cdot c(H^+)}{K_1}$$
(6)

$$c(HSO_{3}^{-}) = \frac{c(SO_{3}^{2-}) \cdot c(H^{+})}{K_{2}}$$
(7)

$$c[S(IV)] = c(SO_2) + c(HSO_3^{-}) + c(SO_3^{2-})$$
(8)

where the K_1 and K_2 are the first and second ionization equilibrium constants of hydrate of SO₂, respectively. The values of K_1 and K_2 were 1.39×10^{-2} and 6.72×10^{-8} mol/kg at 25 °C, respectively [35].

The calculated component concentrations are listed in Table 2. This calculation ignored the impact of CO_2 and Na_2SO_4 on the ionization balance of hydrate of SO_2 while the presence of SO_2 can inhibit the dissociation of H_2CO_3 [21]. For the cases in CO_2 -saturated solution with 100 ppmw SO_2 at pH 4.0 and pH 3.0, there was a 5.65% decrease in bisulfite concentration when the pH value decreased from 4.0 to 3.0. However, under the conditions of pH 3.0 and pH 4.0, the concentration of SO_2 in the solution was very low and had an order of magnitude difference. For the water chemistry calculation under supercritical CO_2 environment with impurities, the work by Sun [21] can be referred to.

Figure 4. Comparison of polarization curves of 316L stainless steel with and without 100 ppmw SO₂ at 25 °C with a pH 2.0 in aqueous solution with saturated CO₂ and 1 wt.% Na₂SO₄.

No.	pН	Temperature, °C	<i>c</i> [<i>S</i> (<i>IV</i>)], mol/L	$c(HSO_3),$ mol/L	$c(SO_2)$, mol/L	$c(SO_3^{2^-}),$ mol/L
1	4	25	$1.25 \cdot 10^{-06}$ (100 ppmw)	$1.24 \cdot 10^{-06}$	$8.92 \cdot 10^{-09}$	$8.33 \cdot 10^{-10}$
2	3	25	1.25·10 ⁻⁰⁶ (100 ppmw)	$1.17 \cdot 10^{-06}$	$8.39 \cdot 10^{-08}$	$7.84 \cdot 10^{-11}$
3	3	25	1.25·10 ⁻⁰⁵ (1,000 ppmw)	$1.17 \cdot 10^{-05}$	$8.39 \cdot 10^{-07}$	$7.84 \cdot 10^{-10}$
4	2	25	1.25 ·10 ⁻⁰⁶ (100 ppmw)	$7.27 \cdot 10^{-07}$	$5.23 \cdot 10^{-07}$	$4.89 \cdot 10^{-12}$
5	1	25	1.25 ·10 ⁻⁰⁵ (1,000 ppmw)	$1.53 \cdot 10^{-06}$	$1.10 \cdot 10^{-05}$	$1.03 \cdot 10^{-12}$

Table 2. Results from calculating component concentrations in solution.

Figure 5 shows the cathodic polarization curves of 316L stainless steel in CO_2 -saturated solution with 1 wt.% Na₂SO₄ under different pH conditions. The shape of the cathodic polarization curves is the same as that obtained by Tran [26], which also showed that with the decrease of pH, the charge transfer current increased and the limiting current rose. This result verified the reliability of this experimental study.

The cathodic polarization curves of 316L stainless steel in CO_2 -saturated solution containing SO_2 at different pH conditions are depicted in Figure 6. The second limiting current of the case in CO_2 -saturated solution with 100 ppmw SO_2 at pH 4.0 had a small increase compared with that in CO_2 -saturated solution with 100 ppmw SO_2 at pH 3.0. The concentration of bisulfite in the case of CO_2 -saturated solution with 100 ppmw SO_2 at pH 4.0 was a little larger than that with CO_2 -saturated solution with 100 ppmw SO_2 at pH 3.0. This consistency implies that the second limiting current was mainly related to the direct reduction and limiting diffusion of bisulfite ions.

The cathodic polarization curve of the case in CO₂-saturated solution with 1,000 ppmw SO₂ at pH 1.0 is also shown in Figure 6. At pH 1.0, the cathodic current was large, and the solution resistance was deducted from the cathodic sweeps, leading to a smaller scan range as found in Figure 6. However, the "second-wave" phenomenon was also observed. The first-stage limiting current for the case at pH 1.0 was close to the second-stage limiting current of the case with CO₂-saturated solution with 1,000 ppmw SO₂ at pH 3.0. The concentration of bisulfite in the case of CO₂-saturated solution with 1,000 ppmw SO₂ at pH 3.0 was close to the concentration of SO₂ in the case of CO₂-saturated solution with 1,000 ppmw SO₂ at pH 1.0. Further, at pH 1.0, the first-stage limiting current was most possibly related to the limiting diffusion of SO₂ while the second-stage limiting current was predominantly attributed to the limiting diffusion of H⁺ ions. This characteristic is different from the cases at other pH value conditions.

Based on these test results, we concluded that hydrate of SO_2 and bisulfite are both involved in cathodic reactions. This can readily explain the aforementioned characteristics of cathodic curves under all pH conditions. However, if O_2 was also involved in the CO_2 stream, the oxidation of bisulfite may alter this reaction behavior.

Figure 5. Comparison of potentiodynamic curves of 316L stainless steel for different pH values at 25 °C in aqueous solution with saturated CO₂ and 1 wt.% Na₂SO₄.

Figure 6. Comparison of potentiodynamic curves of 316L stainless steel with SO₂ for different pH values at 25 °C in aqueous solution saturated with CO₂, 1 wt% Na₂SO₄.

Figure 7 portrays the corrosion rates obtained by the LPR method under different test conditions. Typically, the corrosion rates increased when SO_2 appeared in the CO_2 -saturated solution

at the same pH. The corrosion rate in the case of CO₂-saturated solution with 100 ppmw SO₂ is approximately eight times the corrosion rate of the case with CO₂-saturated solution without SO₂ at pH 2.0. It can be thought that although SO₂ had a marginal effect on the cathodic polarization curve at pH 2.0, it could promote the anodic reaction, which has been demonstrated by previous work [32]. The experimental results of steel corrosion in supercritical CO₂ environments with SO₂ impurities also verified that the addition of SO₂ impurities can increase the corrosion rates [3-5]. At pH 3.0 and pH 4.0, all the corrosion rates were less than 0.1 mm/y and no visible corrosion took place on the steel surface after tests, implying the weak corrosiveness of the test solutions. At pH 3.0, the corrosion rate increases with the rise in SO₂ concentration. The corrosion rate of the case with CO₂-saturated solution without SO₂ at pH 4.0 was minimal, specifically as low as 0.0013 mm/y.

The results of EIS tests for different conditions at pH 4.0 are demonstrated in Figure 8. The polarization resistance of the case with CO_2 -saturated solution without SO_2 seems to be the largest and the Warburg impedance was found in all cases, potentially indicating the formation of product films that can impede the diffusion of corrosive media. The composition of corrosion products might be complex if O_2 was involved in the corrosion process [36]. The overall trend of polarization resistance obtained by EIS was in robust agreement with the LPR test results.

Figure 7. Comparison of electrochemical measurement results of 316L stainless steel under different test conditions. The test condition numbers correspond to the condition numbers listed in Table 1: 1. pH 1.0, CO₂ + 1,000 ppmw SO₂; 2. pH 2.0, CO₂; 3. pH 2.0, CO₂ + 100 ppmw SO₂; 4. pH 3.0, CO₂; 5. pH 3.0, CO₂ + 100 ppmw SO₂; 6. pH 3.0, CO₂ + 1,000 ppmw SO₂; 7. pH 4.0, CO₂; 8. pH 4.0, CO₂ + 100 ppmw SO₂; 9. pH 4.0, 100 ppmw SO₂; 10. pH 4.0, CO₂ + 100 ppmw SO₂ + NaHSO₃.

Figure 8. Nyquist plots at 0 V vs. a saturated Hg/Hg₂Cl₂ electrode of 316L stainless steel under different test conditions at 25 °C in aqueous solution with saturated CO₂ and 1 wt% Na₂SO₄.

4. CONCLUSIONS

In the present work, the cathodic reaction behavior of 316L stainless steel corrosion in a mixed CO_2 -SO₂-H₂O environment was assessed. The potentiodynamic sweep, LPR and EIS methods were applied experimentally. The following conclusions can be drawn based on the test results:

(1) The presence of SO_2 increased the corrosion rate at the same pH, especially for the cases at lower pH conditions;

(2) There was no visible corrosion observed in the presence or absence of SO_2 in the CO_2 -saturated solution at pH 4.0 and 3.0;

(3) When SO_2 appeared in CO_2 -saturated solution, the cathodic reactions were affected. New cathodic reactions were involved in the cathodic process; and

(4) Both hydrate of SO₂ and bisulfite are directly reduced on the steel surface during the cathodic process, and this is besides the H^+ reduction taking place.

ACKNOWLEDGEMENTS

The authors would like to announce that this work was financially supported by National Natural Science Foundation of China (51604289), National Key R&D Program of China (2017YFC0805800), Beijing Natural Science Foundation (2172048) and Science Foundation of China University of Petroleum, Beijing (2462014YJRC043). Part of the results was presented in the conference of Eurocorr 2017, and permission to publish these results has been obtained.

References

- 1. A.Oosterkamp and J. Ramsen, State-of-the-art overview of CO₂ pipeline transport with relevance to offshore pipelines, POLYTEC, 2008.
- 2. E. de Visser, C. Hendriks, M. Barrio, M.J. Molnvik, G. de Koeijer, S. Liljemark and Y. Le Gallo, *Int. J. Greenh. Gas Con.*, 2 (2008) 478.
- 3. Y.S. Choi, S. Nesic and D. Young, Environ. Sci. Technol., 44 (2010) 9233.
- 4. Y. Xiang, Z. Wang, C. Xu, C. Zhou, Z. Li and W. Ni, J. Supercrit. Fluid., 58 (2011) 286.
- 5. Y. Hua, R. Barker and A. Neville, Int. J. Greenh. Gas Con., 37 (2015) 412.
- 6. Y. Hua, R. Barker and A. Neville, Corrosion, 71 (2015) 667.
- 7. Y. Hua, R. Barker and A. Neville, Int. J. Greenh. Gas Con., 31 (2014) 48.
- 8. Y. Hua, R. Barker and A. Neville, J. Supercrit. Fluid., 97 (2015) 224.
- 9. F. Farelas, Y.S. Choi and S. Nešić, Corrosion, 69 (2013) 243.
- 10. M. Xu, Q. Zhang, X. Yang, Z. Wang, J. Liu and Z. Li, J. Supercrit. Fluid., 107 (2016) 286.
- 11. L. Wei, X. Pang and K. Gao, Corros. Sci., 103 (2016) 132.
- 12. L. Wei, X. Pang and K. Gao, Corros. Sci., 111 (2016) 637.
- 13. C. Sun, J. Sun, Y. Wang, X. Lin, X. Li, X. Cheng and H. Liu, Corros. Sci., 107 (2016) 193.
- 14. C. Sun, Y. Wang, J. Sun, X. Lin, X. Li, H. Liu and X. Cheng, J. Supercrit. Fluid., 116 (2016) 70.
- 15. J. Sun, C. Sun, G. Zhang, X. Li, W. Zhao, T. Jiang, H. Liu, X. Cheng and Y. Wang, *Corros. Sci.*, 107 (2016) 31.
- 16. A. Dugstad, M. Halseid and B. Morland, Energ. Procedia, 37 (2013) 2877.
- 17. A.S. Ruhl and A. Kranzmann, J. Supercrit. Fluid., 68 (2012) 81.
- 18. S. Sim, I.S. Cole, F. Bocher, P. Corrigan, R.P. Gamage, N. Ukwattage and N. Birbilis, *Int. J. Greenh. Gas Con.*, 17 (2013) 534.
- 19. Y. Xiang, Z. Long, C. Li, H. Huang and X. He, Int. J. Greenh. Gas Con., 63 (2017) 141.
- 20. Y. Xiang, M. Xu and Y.-S. Choi, Corros. Eng. Sci. Techn., 52 (2017) 485.
- 21. J. Sun, C. Sun and Y. Wang, Ind. Eng. Chem. Res., doi: 10.1021/acs.iecr.7b04870 (2018).
- 22. M. Xu, W. Li, Y. Zhou, X. Yang, Z. Wang and Z. Li, Int. J. Greenh. Gas Con., 51 (2016) 357.
- 23. W. Lv, C. Pan, W. Su, Z. Wang, S. Liu and C. Wang, Corros. Eng. Sci. Techn., 51 (2016) 155.
- 24. S. Sabir and A.A. Ibrahim, Corros. Eng. Sci. Techn., 52 (2017) 276.
- 25. I.M. Allam, J.S. Arlow and H. Saricimen, Corros. Sci., 32 (1991) 417.
- 26. T. Tran, Corrosion mechanisms of mild steel in weak acids, Ohio University, 2014.
- 27. A. Kahyarian, B. Brown and S. Nešić, Corrosion, 72 (2016) 1539.
- 28. Y. Zheng, B. Brown and S. Nešić, Corrosion, 70 (2014) 351.
- 29. Y. Zheng, J. Ning, B. Brown and S. Nešić, Corrosion, 71 (2015) 316.
- 30. Y. Zheng, J. Ning, B. Brown and S. Nešić, Corrosion, 72 (2016) 1519.
- 31. Y. Zheng, J. Ning, B. Brown and S. Nešić, Corrosion, 72 (2016) 679.
- 32. Y. Xiang, C. Li, Z. Long, C. Guan, W. Wang and W. Hesitao, Electrochim. Acta, 258 (2017) 909.
- 33. M. Stern and A.L. Geary, J. Electrochem. Soc., 104 (1957) 56.
- 34. S.W. Dean, Handbook on Corrosion Testing and Evaluation, John Wiley, (1971) New York.
- 35. R.N. Goldberg and V.B. Parker, J. Res. National Bur. Stand., 90 (1985) 341.
- 36. W. McLeod and R.R. Rogers, Corrosion, 22 (1966) 143

© 2018 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).