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In the present study, a calcium phosphate/chitosan/gentamicin (Ca-P/CS/gentamicin) film was 

deposited onto a titanium alloy surface through electrochemical deposition. High drug loading into the 

coating was described, along with a controlled release of the drug over two days. After the 

implantation of the developed film into rat calvarial defects, new woven bone was formed in the 

defects and mineralized at a high rate (62.5 mm/day) during the initial stages, which is much higher 

than that of normal bone growth rates (several mm/day, 0.1 mg/day). 
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1. INTRODUCTION 

Due to their degradable properties, titanium and related alloys have advantages over other 

alloys such as stainless steel [1-5]. Therefore, titanium and related alloys have been accepted as more 

favourable materials for implantation into the human body. Unfortunately, these alloys also exhibit 

certain disadvantages, including undesirable corrosion resistance and high chemical activity [6-10]. In 

corrosive media (pH < 11.5 or Cl-containing media), the corrosion rates of titanium-based materials 

are faster [11]. Previous studies investigated the corrosion resistance of a medical AZ91 Mg alloy in a 

simulated solution [12, 13], and the results have shown a fast degradation in the titanium alloy soaked 
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in the simulated solution during the earlier stage. Additionally, in a physiological environment 

containing Cl, the use of titanium could lead to the formation of amorphous degradation products and 

porous pitted surfaces. Therefore, the use of titanium and related alloys can affect the surrounding 

tissue during the early implantation stage. To improve material histocompatibility, it is essential to 

control the degradation rate and enhance the biological activity [14, 15]. Through titanium alloy 

surface modification, the corrosion rate and implant material biocompatibility of the alloy can be 

improved, and its degradation rate can also be adjusted to the bone healing speed.  

Gentamicin, an antibiotic of the aminoglycoside family, has gained wide application recently. 

Many previous studies have employed a wide range of coatings and loading routes to study the 

gentamicin release involved in antibacterial implants [3, 16-20]. Lucke and coworkers [21] 

investigated the gentamicin-loaded poly(D,L-lactide) coating on a metallic implant in a rat model. 

Price and coworkers [22, 23] presented the transportation of gentamicin through a biodegradable 

carrier, namely, a polylactic-co-glycolic acid copolymer. Pishbin and coworkers [22] described the 

electrophoretic deposition of a chitosan (CS)-bioactive glass composite containing gentamicin. Hayes 

et al. and Van de Belt et al. [24, 25] proposed a coating that eluted antibiotics for sixty days (40% of 

the elution occurred during the initial five days).  

The present study reports the preparation of antibiotics involving Ca-P/CS composite films 

deposited using an electrochemical process. The optimization of different parameters on the synthesis 

of the composite materials was also determined based on a systematic investigation. The composite 

film was developed to heal large bone defects that are unable to self-heal and require a relatively large 

bone graft as an artificial bone substitute. A critical-sized defect (CSD) refers to the minimal defect 

that will not heal, regardless of the healing time. 

 

2. EXPERIMENTS 

2.1. Chemicals 

Commercially available gentamicin sulfate, dextran sulfate, acetic acid, pentasodium 

tripolyphosphate hexahydrate (TPP), low-molecular-weight CS, nitric acid (65%), hydrofluoric acid 

(40%), ammonium dihydrogen phosphate (98%), calcium nitrate (99%), sodium hydroxide (analytical 

grade), sodium borate, o-phthaldialdehyde, phosphate buffered saline (PBS), and 2-mercaptoethanol 

were acquired from Sigma-Aldrich. Hydrochloric acid and isopropanol were both of analytical grade 

and were commercially available from Bio-Lab. The Ti-6Al-4V ELI grade rods (length, 5 mm; 

diameter, 9.5 mm) were produced by Dynamet Technology Inc. and supplied by Barmil. The disks 

were used as the working electrode in our case. Deionized (DI) water (>18 MV cm) was used 

throughout the experiments. 

 

2.2. Synthesis of the compound CS/gentamicin nanoparticles 

The synthesis of the CS nanoparticles was based on the ionic cross-linking of CS with TPP. For 

the preparation of a 0.2% CS solution (w/v), CS was dissolved in 1% diluted acetic acid (v/v) under 
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sonication at ambient temperature. The obtained CS solution (pH range: 4.0 - 5.5) was then flush 

mixed with a specific volume of the SA and GM solution. This step was followed by the dropwise 

addition of the gentamicin-dextran sulfate mixture under magnetic stirring for 60 s at 1000 rpm. Under 

the same conditions, 10 mL of TPP (0.8% w/v) was also dropwise added into the as-prepared mixture, 

upon which the CS nanoparticles were formed. After continuous stirring for 60 min, the obtained 

nanoparticle suspensions were centrifuged for 0.5 h at 16,000 rpm. In addition, the final nanoparticle 

products were lyophilized and stored before use. 

 

2.3. Electrodeposition 

Based on a Ca-P molar ratio of 1.67, the electrodeposition solution containing CS–acetic acid 

(4%), NH4H2PO4 (0.025 M), gentamicin/CS (1 mg/mL), and Ca(NO3)2H2O (0.042 M) was 

synthesized. Initially, Ca(NO3)2 and CS–acetic acid were added into the electrolytic assembly, 

followed by the slow addition of NH4H2PO4 under stirring. Then, the alloy was immersed into the as-

prepared mixed solution for electrodeposition. The effects of various CS contents, deposition times, 

deposition temperatures, and current densities on the performance of the as-prepared Ca-

P/CS/gentamicin films were investigated. Finally, the optimum film was cultured in simulated body 

fluid (SBF) to study its mineralization performance. The reagents for the preparation of SBF are 

summarized in Table 1. 

 

Table 1. Reagents for the preparation of SBF (pH 7.40, 1 L). 

 

Order Reagent Amount 

1 NaCl 7.996 g 

2 NaHCO3 0.350 g 

3 KCl 0.224 g 

4 K2HPO4 0.228 g 

5 MgCl2 0.305 g 

6 1M-HCl 40 mL 

(About 90 % of total amount of HCl to be added) 

7 CaCl2 0.278 g 

8 Na2SO4 0.071 g 

9 (CH2OH)3CNH2 6.057 g 

 

2.4 Characterizations 

A Rigaku Rotalflex RU-200B diffractometer equipped with a Ni filter and a Cu Kα (λ = 1.5418 

Å) source operating at 40 kV and 40 mA was used for a crystallographic investigation. The zeta 

measurements were carried out using a Zetasizer system (Model ZEN 3600, Malvern Instruments, 

Malvern, UK). The potentiodynamic polarization measurements were performed using a conventional 
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three-electrode setup in SBF. All the potentiodynamic polarization tests were performed at a scan rate 

of 1 mV/s. The analysis of gentamicin was carried out using UV-Vis spectroscopy via a Halo RB-10 

UV-Vis spectrophotometer. 

 

 

3. RESULTS AND DISCUSSION 

The amount of gentamicin in the as-prepared NPs was set as 67% (wt.%). Figure 1 shows the 

influences of pH and ionic species (such as P and Ca in the suspension) on the size and ζ-potential of 

the NPs. Considering the CS pK of approximately 6.3, the ζ-potential is expected to be positive when 

the pH is lower than the pK, and a further increase in pH will lead to a lower ζ-potential [26]. 

Therefore, aggregation occurs when the pH exceeds the pK, as shown from the particle size results. In 

the case of an acidic pH, the NPs show a smaller diameter and a higher zeta potential, which suggest a 

stable suspension. The suspension remained stable at all concentrations, and the NPs were only slightly 

enlarged compared with their original sizes. It can be seen that the NPs may be precipitated in an 

acidic solution in an electrochemical system, where negative potentials are applied, which lead to 

water reduction and an increase in pH near the working electrode. This phenomenon was consistent 

with the electrochemical deposition of Ca-P, also realized by an increase in the electrochemical pH 

[27, 28]. These results indicate that when water in a suspension contained both ionic species of P and 

Ca, CS/gentamicin NPs were electrochemically reduced, and the two species were simultaneously 

deposited. 

 

 
 

Figure 1. Optimization of parameters: (A) pH effect on the size and zeta potential of drug-loaded 

particles in suspension; (B) solution Ca concentration effect on the diameter and zeta potential 

of drug-loaded particles in suspension; and (C) Ca-P effect on the diameter and zeta potential 

of drug-loaded NPs in suspension. 

 

The electrodeposition mechanism in an electrolyte containing chitosan is described as follows: 
2
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CaHPO4 2H2O (DCPD) or Ca3(PO4)2 were formed after OH was adsorbed on the cathode in the 

presence of Ca
2+

 and H2PO4
-
 in the electric field:  
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The optimized parameters for the preparation of the Ca-P/CS/gentamicin film are as follows: 

current density, 3 mA/cm
2
; deposition time, 0.5 h; deposition temperature, 30°C; added CS/gentamicin 

volume, 3 mL, as shown in the XRD pattern of Figure 2. Additionally, the diffraction peaks of 

CaHPO4·2H2O (DCPD) and Ca3(PO4)2 were also observed. Furthermore, the diffraction peaks of TCP 

were observed in the vicinity of 33°, 45°, and 60°, and the diffraction peaks of DCPD appeared over a 

range of 10° and 35
o
. 

 

 
 

Figure 2. XRD patterns recorded for the Ca-P/CS/gentamicin film synthesized under optimum 

parameters (30°C, 3 mL chitosan, 3 mA/cm
2 

and 30 min). 

 

For the titanium alloy, the dynamic polarization curves for both the normal microarc oxidation 

and Ca-P/CS/gentamicin films in SBF are shown in Figure 3. For the normal microarc oxidation-

treated titanium alloy, the corrosion potentials showed a clear shift from -1.0 V to -0.64 V due to the 

surface passivation process. Therefore, the normal microarc oxidation can be considered an effective 

method for titanium alloy treatment. For the Ca-P/CS/gentamicin film, the corrosion potential shifted 

in the positive direction approximately 400 mV and 100 mV when compared with the matrix and the 

microarc oxidation membrane of the titanium alloy, respectively. However, the size of passivation 

regions and their corresponding stable current density varied. On the other hand, the thin Ca-

P/CS/gentamicin film showed a sharply decreased corrosion current, suggesting more favourable 

anticorrosion behaviour. Therefore, it can be concluded that the biological film was suitable for the 

substrate in SBF. Table 2 shows the polarization parameters of the substrate, normal microarc 

oxidation film and Ca-P/CS/gentamicin film in SBF. When the potential increased as high as -521 mV, 

the Ca-P/CS/gentamicin film showed no breakdown potential, indicating that this sample was highly 

resistant to local corrosion. 
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Figure 3. Polarization curves recorded for the substrate, normal microarc oxidation film and Ca-

P/CS/gentamicin film in SBF. 

 

 

Table 2. Electrochemical polarization parameters for the substrate, normal microarc oxidation film and 

Ca-P/CS/gentamicin film in SBF. 

 

Sample Ecorr 

(mV) 

ba (mV/dec) bc (mV/dec) 

Titanium alloy -1007 85 97 

Normal microarc oxidation film -644 84 102 

Ca-P/CS/gentamicin film -521 78 97 

 

 
 

Figure 4. In vitro release profile recorded for gentamicin from the Ca-P/CS/gentamicin film with 

varying feed ratios of CS to gentamicin (n = 3). 
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Figure 4 shows the in vitro cumulative release of gentamicin from our developed film with 

varying feed ratios of CS to gentamicin over a range of 1.0:1.0 to 3.0:10. The corresponding release 

profile exhibited three phases [29]: an initial rapid release phase, a relatively slow release phase, and 

an even slower release phase. The rapid release (within the first 4 h) can also be referred to as a burst 

release. In brief, approximately 46% gentamicin was released (feed ratio of CS:gentamicin, 2.0:1.0). 

This process mainly results from the simple diffusion of the nanoparticles on the surface during the 

first phase. The following phase (4 to 12 h) was due to the diffusion of these drugs from the matrix, 

where approximately 87% gentamicin was released. The last phase resulted from the degradation of 

the polymer, which was characterized by the diffusion of the dissolved drugs into the release medium. 

From the compound nanoparticles, the cumulative percentage release of gentamicin reached 

approximately 95% (in 72 h). The formulations with a higher amount of drugs showed a higher drug 

release rate, whilst those with a lower amount of drugs exhibited a lower release rate [30]. Since the 

antibiotic is highly soluble, it can be hypothesized that either the drug is not exposed to the aqueous 

environment or there is a diffusion barrier inside the coating. This encapsulation may be beneficial if 

the barriers can be removed during the late stages of implantation, allowing the remainder of the drug 

to elute. 

The synergistic effects of the physical factors (the degradation rate of the implanted 

biomaterials, availability of bone minerals, physical scaffolds, etc.) and biological factors (anatomic 

position, age, species, etc.) determine the bone healing kinetics. As shown in the histological studies, 

by day 40, new bone was almost completely substituted for the biomaterial during the repair of rat 

CSDs. Given that the bone was growing at a nominally constant rate, the average growing speed of the 

bone was calculated to be 2.5 mm/40 days, i.e., 62.5 mm/day, which is significantly higher than that of 

conventional bone remodelling for rats of the same age [31]. For the 4-month-old rats, the obtained 

bone growth rate was low, i.e., only several mm/day [32]. 

 

 

4. CONCLUSIONS 

The present study reported the successful deposition of Ca-P/CS/gentamicin films onto a 

titanium alloy surface under optimum conditions. It was found from the in vitro release profile that the 

release rate of gentamicin from the developed films was affected by the feed ratio. The developed 

films enhanced the bone growth rate of the defects at the initial stage, showing a growth rate of 62.5 

mm/day, which is significantly higher than that of the growth rate of normal bone. 
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