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In order to predict the remaining useful life (RUL) of lithium-ion battery more accurately, a new 

prediction method based on extreme learning machine (ELM) is proposed in this paper. First, 

according to the mutation idea of genetic algorithm (GA), we add mutation factors to improve particle 

swarm optimization (PSO) algorithm. Then, the particles generated by the improved PSO algorithm 

are used as the input weights and bias of the ELM algorithm. The optimized ELM prediction model is 

applied to estimate the RUL of the lithium-ion battery. Three sets of data are used to verify the 

accuracy of the proposed algorithm in this paper.  
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1. INTRODUCTION 

Lithium-ion batteries have become an important power supply in recent years and have been 

successfully applied to electric vehicles, aerospace, portable electronic products and other fields [1]. 

Compared with the traditional batteries, lithium-ion batteries have the advantages of good safety, high 

energy density and long cycle life [2]. However, as the increasing of charging and discharging cycles, 

the physical and chemical properties of the internal will be changed, and its function will gradually 

deteriorate. Battery failure will cause many hazards, such as economic losses, major disasters, and 

even life-threatening [3]. In June 14th 2016, for example, at NASA's Jet Propulsion Laboratory, the 
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ape-like robot RoboSimian was in charge of a project. The lithium-ion battery exploded and the whole 

robot was destroyed. 

In order to avoid unnecessary losses, it is necessary to propose the battery management system 

(BMS), which can effectively monitor the battery pack, accurately estimate the remaining battery pack 

capacity, and effectively prevent battery safety accidents [4]. The RUL is an important performance 

indicator of BMS. The battery life is expressed as the cycles of charging and discharging. The battery 

capacity falls to the threshold (usually 70%-80% of the battery capacity), indicating the end of battery 

life [5]. 

The common RUL prediction methods are divided into two categories: model-based 

prognostics methods and data-driven based methods [6]. Model-based prediction is a mathematical 

model with physical rules that can reflect the degradation of system performance from the internal 

working mechanism of lithium-ion batteries [7]. In [8], the battery capacity of lithium-ion batteries is 

estimated based on extended kalman filtering (EKF) method, which is compared with other prediction 

methods to prove the effectiveness of the method. The literature [9] improves the particle filter (PF) 

algorithm with the artificial fish swarm algorithm. The improved PF algorithm is used to predict the 

remaining useful life of the lithium-ion battery. However, due to the complicated internal 

characteristics of lithium-ion batteries, it’s complex and difficult to achieve model-driven method [10-

11]. Data-driven approach can effectively avoid these shortcomings by monitoring the state of the 

system, analyzing the state behavior of the analyzer according to historical data and converting it into 

relevant models to predict the future state of the system [12]. These approaches have been applied to 

predict the RUL of lithium-ion battery [13-17]. Support vector machine (SVM) is one of the model-

based methods. The literature [18] first extracts the characteristics of the temperature and voltage, then 

uses the SVM method to predict the RUL, and has achieved good results. However, SVM has high 

computational complexity and consumes computational time in practical applications. The relevance 

vector machine (RVM) method is based on the SVM method, which reduces the computational 

complexity. In [19], wavelet denoising method is used to improve the certainty of RVM method, and a 

time series prediction model is constructed, which achieves good results for battery life prediction. 

However, the high degree of sparsity of the RVM approach determines the output instability of its 

results. The Artificial Neural Network (ANN) has the advantages of flexibility and easy 

implementation [20], and has been applied to the prediction of the remaining useful life of lithium-ion 

batteries. In [21], the author predicted the RUL of lithium-ion batteries by ANN method and traditional 

method. The results show that the ANN method is more effective. In [22], BP neural network is used 

to predict battery capacity and achieved good results. However, artificial neural networks also have 

some disadvantages such as long training time and complex calculation.  

ELM is based on single hidden layer feedforward neural network, which has the characteristics 

of fast speed, easy implementation and good generalization performance [23]. It can effectively avoid 

the above shortcomings of neural networks and has been widely used in the classification and 

regression problems, and the input weights and bias in the ELM algorithm are randomly generated 

[24]. The ELM algorithm has been used in a variety of lithium battery predictions due to its good 

performance. [25] Uses the ELM method to estimate the state of  charge (SOC) and state of health 

(SOH) values of lithium batteries. In [26], the ELM model is proposed in the SOC estimation of 
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mobile lithium batteries. In [27], an indirect prediction model of ELM is used to estimate the RUL 

based on the novel heahth indicator (HI). [28] proposes the online sequential ELM (OS-ELM) 

prediction model and uses the  indirect method to predict the SOC of the lithium battery. In [29], ELM 

is used to predict the RUL. 

The ELM method will greatly reduce the training time, but at the same time, its prediction 

performance will be affected. In this paper, the weights and bias in ELM are optimized. According to 

the principle of mutation in GA, particle swarm optimization (PSO) algorithm is improved and forms 

mutation particle swarm optimization (MPSO) algorithm, which has better optimization ability to 

optimize the weights and bias of ELM. In this paper, NASA’s lithium-ion battery data sets are used 

and the experiment results show that the prediction error of the proposed method is smaller. 

The structure of this paper is as follows: the second part briefly introduces the techniques, 

algorithms and methods, including ELM and PSO. The third part is about the experiments. The 

proposed method compared with the other algorithms is discussed in fourth part. The conclusion is 

drawn in fifth part. 

 

 

 

2. METHODS OUTLINED 

2.1. Extreme learning machine 

ELM is a single hidden layer neural network, including the input layer, hidden layer and output 

layer, as shown in Fig.1, X1, X2, …, Xn are input variables of the network, W1, W2, ..., WL are input 

weights, b1, b2, ..., bL are bias and the output value is tj [30]. 

 

Output Nodes

L Hidden Nodes

N Input Nodes

β1 β i β L

(W1 ,b1 ) (Wi  ,bi ) (WL ,bL )

x1 xn

tj

 
 

Figure 1. ELM network structure 
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The ELM algorithm procedures [23] are as follows: 

(1) Randomly generate input weight vectors [W1, W2, …, WL] and bias[b1, b2, …, bL], 

where L is the number of hidden nodes. 

(2) Determine the formula and the activation function. According to the calculation formula 

of neural network, the relation between its input and output is as follows: 

 

 

(1) 

where G(x) is the activation function; Eq.(1) can be written as follows: 

  (2) 

in which, 

 

 

(3) 

(3) Calculate the output weight. The value of the generalized inverse matrix β is calculated 

by the Eq.(2) 

  (4) 

H
+
 is the Moore-Penrose generalized inverse of H. 

From the ELM algorithm steps, it can be seen that compared with the traditional neural 

network, the ELM algorithm has no iterative steps, thus greatly reducing the training time and 

computational complexity. 

 

2.2. MSPO 

PSO algorithm belongs to the group intelligent optimization algorithm [31]. It is a population-

based algorithm. In a space, a group of particles is initialized, and the particle's characteristics are 

represented by three indicators: location, speed and fitness. [32]. The performance of each particle is 

measured by the fitness function. Particles move at a certain speed and update their positions in 

multidimensional space, and the fitness of particles is calculated every time they are updated [33]. 

In a M-dimensional space, there are n particles which make up the population X= (X1, X2,...Xn), 

Xi represents the position of the ith particle in space, which is also a potential solution [34]. According 

to the objective function, the fitness value corresponding to each particle position Xi can be calculated.  

Pi= [Pi1, Pi2, ...,PiM] represents the individual extreme value, and the global extreme value of the 

population is Pg = [Pg1, Pg2, ..., PgM]. In each iteration, the particle updates its velocity and position 

according to the individual extremum and the global extremum [35]. The update formulas are: 

  (5) 

  (6) 

where the inertia weight is represented by ω, d = 1,2, ..., M, i = 1,2, ..., n. k is the number of 

current iterations. Vid  is the particle velocity. c1 and c2 are the acceleration factors and are non-negative 

constants.  r1 and r2 are random numbers whose values are distributed between [0, 1]. The general 

position range is [-Xmax,  Xmax] and the speed range is [-Vmax, Vmax]. 
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However, PSO algorithm has some shortcomings: low iteration efficiency and the possibility of 

not getting the global optimal solution. Literature [36] proposed the MPSO, which is based on the idea 

of adaptive operation of genetic algorithm, some variables are reinitialized with a certain probability, 

so as to improve the PSO algorithm. The mutation operations extend the ever-narrowing population 

search space in iterations so that particles can jump out of the previously found optimal value positions. 

Therefore, based on the PSO algorithm, a simple mutation operator is introduced. The basic idea is that 

after each particle update, the particle is reinitialized with a certain probability, and the improved 

algorithm has better performance. The steps of MPSO are as follows: 

 

Algorithm 1. PSO algorithm 

Step1.  Initializing particles and velocities; 

Step2.  Finding the optimal value of individuals and the optimal value of population; 

Step3.  Updating the particles and speed; 

Step4.  Adaptive mutation; 

Step5.  Estimating fitness function; 

Step6.  Updating individual extreme value and global extreme value; 

Step7.  Determining whether to meet the conditions, if not satisfied, and then go to 

Step3, otherwise, to generate particles. 

 

2.3 MPSO-ELM algorithm 

Data

Train Data Test Data

Train Output Data Train Input Data Test Input Data Test Output Data

Training ELM 

Initializing 
particles and 

velocity

Fitness 
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Figure 2. The flow chart of MPSO-ELM algorithm 
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From the first step of ELM algorithm, we know that the input weights and bias of ELM 

algorithm are randomly generated, although the training time is greatly reduced, its accuracy will also 

be affected. In this paper, an improved MPSO-ELM method is proposed to optimize the input weights 

and bias of the ELM algorithm and to improve the prediction accuracy. The algorithm flowchart is 

shown in Fig.2. 

The MPSO-ELM algorithm steps are as follows: 

 

Algorithm 2. MPSO-ELM algorithm 

Step1. Dividing the data into training set and test set; 

Step2. The training data are processed as an input set and an output set. Similarly, the 

test data are processed as an input set and an output set; 

Step3. The weight and the length of bias are taken as the size of the particle swarm 

and the particle and velocity of the PSO algorithm are initialized; 

Step4. The initialized particle is used as the weights and bias of ELM in the training 

stage and the training set is introduced into the ELM model to calculate the simulated 

output value. Taking the mean square error of the simulated value S and the real value 

Y as fitness function, the formula is as follows, where n is the length of the training 

set; 

 

 

(7) 

 

Step5. Finding the individual extreme value and global extreme value; 

Step6. Updating speed and population; 

Step7. Adaptive mutation; 

Step8. Taking the particles as the weights and the bias into the ELM algorithm to 

calculate the fitness value again; 

Step9. Updating individual optimal value and population optimal value; 

Step10. Determining whether the iteration is optimal, if no then jump to (2), if the 

iterative optimal is reached, the final weight and bias are generated; 

Step11. The trained ELM model is used to predict the input value of the test set and 

the prediction results are obtained. 

 

In order to compare the effects, we use the PSO-ELM [19] algorithm as the contrast in the 

experimental part. The PSO-ELM algorithm optimizes the input weights and bias of ELM. Compared 

with the MPSO-ELM algorithm proposed in this paper, PSO-ELM algorithm has no adaptive mutation 

process. 

 

 

 

3. EXPERIMENT 

The data used in this paper is lithium-ion battery data tested by the NASA PCoE Research 

Center, which can be downloaded publicly on the database (http://ti.arc.nasa.gov/tech/dash/pcoe/ 

prognostic-data-repository/). The experiment used a commercially available 18650 lithium-ion battery 

with a rated capacity of 2Ah and a set of three lithium-ion batteries (B5, B6 and B18) under three 
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different operations (charging, discharging and resistance Measurement) at constant temperature of 

25℃, and recorded monitoring data at the same time [9]. 

The charge-discharge test method is: charging at 1.5A constant current mode until the battery 

voltage reaches 4.2V, then continuing to charge in a constant voltage mode until the charge current 

drops to 20mA. Discharging at a constant current of 2A until the battery voltage drops to 2.7V, 2.5V, 

2.2V and 2.5V for B5, B6, B7 and B18, respectively [16]. The battery was aged by repeating the above 

charging and discharging cycles, and stopped when the actual capacity of the battery dropped to 70% 

of rated capacity (from 2Ah to 1.4Ah) [37]. Figure 3 is the actual capacity of three batteries (B5, B6 

and B18) and the relationship between the cycles of charges and discharges. Experiments are based on 

the MPSO-ELM algorithm to predict the RUL of these three sets of data. 

 

 
 

Figure 3. The degradation curve of the actual capacity of lithium-ion battery with the charging and 

discharging cycles 

 

Table 1 shows MPSO-ELM algorithm parameter values of three groups of data, including the 

inputs numbers, hidden nodes numbers, training numbers and test numbers. 

 

Table 1. ELM parameters for data set 

 

 B5 B6 B18 

Input Numbers 3 3 3 

Hidden Numbers 10 10 8 

Training Numbers 86 86 68 

Test Numbers 82 82 64 

 

Three kinds of error evaluation criteria are used to evaluate the effectiveness of the algorithm. S 

represents the capacity of lithium-ion battery, Y represents the true value,  represents the predicted 
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average value of lithium-ion battery capacity, n is the number of samples. RULS represents the 

predictive value of RUL for lithium-ion batteries, and RULT   represents the true value of RUL. 

(1) The mean square error (MSE) is used to evaluate the prediction accuracy, which is also 

an adaptive function of MPSO algorithm in this paper. The smaller the value is, the better the accuracy 

of the prediction data will be [38], and the form is the Eq. (7). 

(2)  R
2 

is used to evaluate the overall prediction effect, and the closer to 1, the more 

accurate the prediction is [29], the expression form is: 

 
 

(8) 

(3) Remaining useful life prediction error (RULE) is used to evaluate the accuracy of RUL 

prediction [39], which is expressed as follows: 

  (9) 

 

4. RESULTS AND DISCUSSION 

 

(a)

(b)

(c)

 

 

Figure 4. Prediction result of battery B5. (a) ELM prediction (b) PSO-ELM prediction and (c) MPSO-

ELM prediction 
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In this paper, the ELM algorithm and the PSO-ELM algorithm are respectively used to 

compare with the MPSO-ELM algorithm. In Fig.4 (a), Fig.4 (b) and Fig.4 (c), experiments under the 

same conditions are performed. Fig.4 (a) is the prediction of B5 by the ELM algorithm, Fig.4 (b) is the 

prediction of B5 by the PSO-ELM algorithm, and Fig.4 (c) is the prediction of the MPSO-ELM 

method mentioned here. The blue line is the predicted value and the red line is the true value.  

Fig.4 (a) is the prediction result of ELM method, there is a big gap between the true value and 

the predicted value. Fig.4 (b) and Fig.4 (c) are the improved prediction values of ELM method. 

Compared with Fig.4 (a), its predicted value and true value are basically same. This shows that the 

ELM algorithm with optimized weights and bias has more accurate prediction result. The error 

evaluation criteria values of the three methods for B5 are given in Table 2. 

(a)

(b)

(c)

 
 

Figure 5. Prediction results for B6 
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The results predicted by MPSO-ELM algorithm for B6 and B18 are shown in Fig. 5 and Fig. 6, 

respectively. Similarly, the red line in the figure is the true value of the capacity and the blue line is the 

predicted value. 

In the figure above, Fig.5 (a) is the predicted result of the ELM method, Fig.5 (b) is the 

predicted result of the PSO-ELM method, and Fig.5 (c) is about the MPSO-ELM method. It is clear 

from the figure that the predicted value of Fig.5 (c) is closer to the actual value. The values of the three 

error evaluation criteria for B6 are listed in Table 2.  

B18 is also used in three prediction method. Fig.6 is about the prediction results. 

(a)

(b)

(c)

 
 

Figure 6. Prediction results for B18 
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As can be seen from Fig.6, as the algorithm continues to improve(from Fig.6(a) to Fig.6(c)), 

the predicted value represented by blue line is getting closer and closer to the true value represented by 

the red line, that is, the prediction accuracy of the RUL of the lithium battery is getting higher and 

higher. The prediction results of MPSO-ELM algorithm are closer to the real value than that of  the 

other two algorithms. The values of the three error evaluation criteria for B18 are also listed in Table 2. 

 

Table 2. Error evaluation criteria for B5, B6 and B18 

 

  RULs(cycle) MSE R
2
 |RULE|(cycle) 

B5 

ELM 

PSO-ELM 

114 0.021213 

0.0012695 

0.94389 

0.94308 

10 

6 118 

MPSO-ELM 125 0.00061225 0.94776 1 

B6 

ELM 128 0.0090136 0.88292 20 

PSO-ELM 113 0.0048735 0.89453 5 

MPSO-ELM 109 0.0004912 0.95142 1 

B18 

ELM 80 0.007725 0.65523 16 

PSO-ELM 80 0.0027823 0.66739 16 

MPSO-ELM 97 0.00042753 0.80285 1 

 

From the value of Table2, we can see that for the MSE value, the method proposed in this paper 

is 0.1 times of the above other two algorithms, and for R
2 

value, the MPSO-ELM method is closer to 1. 

RULE  reflects the difference between the true value and the predicted value, and the closer to 0, the 

more accurate the RUL prediction for lithium battery is, and the values are 1 for the proposed method. 

The three error evaluation criteria values of MPSO-ELM are better than that of the other two 

algorithms, therefore, the MPSO-ELM algorithm proposed in this paper has higher prediction ability. 

Fig.7 lists 3 different groups of experimental data and the size of the MSE value under the 

prediction of different algorithms. The smaller the value of MSE, the more accurate the corresponding 

method is. Different colors represent different algorithms. Among them, the value of the yellow 

columnar strip is the smallest, that is, the accuracy of the MPSO-ELM algorithm is the highest. 

0

0.005

0.01

0.015

0.02

0.025

B5 B6 B18

ELM

PSO-ELM

MPSO-ELM

 

Figure 7.  The value of MSE for three different algorithms 
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Fig.8 is about the absolute values of RULE for the three algorithms, which are distinguished by 

3 different colors. The smaller the RULE value is, the more accurate the forecast result is. The yellow 

histogram is much shorter than the red and green. Therefore, it represents the MPSO-ELM algorithm 

has a higher prediction accuracy. 

0

5

10

15

20

B5 B6 B18

ELM

PSO-ELM

MSPO-ELM

 

Figure8. The absolute value of RULE for three different algorithms 

 

 

To further verify the effectiveness of the MPSO-ELM method, we compare the proposed 

method with some of algorithms in the INTRODUCTION section. In that section, we introduced some 

related and relevant literatures. [25-29] are based on the ELM algorithm for lithium battery prediction. 

[25] Using the ELM algorithm to predict the SOC and SOH values of lithium batteries, the RMSE 

values were 3.1% and 2.4%, respectively. [26] predicts the SOC value of the mobile phone battery 

with a RMSE of 0.0344. [29] uses the OS-ELM algorithm to estimate the SOC value of a lithium-ion 

battery, where the MSE value is 0.000065244. The value of R
2
 is 0.955. However, these articles are 

based on different datasets. Therefore, the results are not comparable to this article. Both [27] and [28] 

are experiments on the battery group B5 based on the ELM algorithm, which have been listed in Table 

3. 

 

Table 3. Comparison of different methods 

 

Data Algorithm Threshold(Ah) RULs(cycle) |RULE|(cycle) 

B5 

DE-RVM
[7]

 

PF
[9]

 

KPF
[9]

 

AFSA-PF
[9]

 

MSVM
[16]

 

PSO-MSVM
[16] 

ELM-HI
 [27]

  

ELM-Indirect
[28]

 

MPSO-ELM 

1.38 

1.38 

1.38 

1.38 

1.4 

1.4 

1.4 

1.38 

1.4 

45 

113 

119 

123 

49 

46 

40 

37 

125 

4 

14 

8 

4 

5 

2 

4 

3 

1 
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The algorithm in [9] is a model-based approach, and the experiment is implemented under three 

different algorithms. The three algorithms are PF algorithm, KPF algorithm and AFSA-PF algorithm. 

The improved SVM algorithm proposed in [7] and [16] belongs to the data-driven method. In [7], the 

differential evolution (DE) algorithm is used to improve the SVM algorithm and the improved DE-

SVM algorithm is used to estimate the RUL of the battery B5. [16] compares the PSO-MSVM 

algorithm with the Multiclass SVM (MSVM) algorithm. 

In Table 3, all the algorithms use the same data set, so the experimental results are comparable. 

We compare the |RULE| values, which reflect the difference between the actual RUL value and the 

predicted value. The smaller the value, the more accurate the method. Therefore, we can see that the 

MPSO-ELM algorithm proposed in this paper can more accurately predict the RUL value of lithium 

batteries. Due to the different thresholds, the |RULE| value is not the same although it has the same 

RULs value. 

In this part, MSPO-ELM algorithm is first compared with some similar algorithms: ELM and 

PSO-ELM. Table 2 lists the results. Then the MPSO-ELM algorithm is compared with several 

algorithms mentioned in the INTRODUCTION section, and the comparison results are given in Table 

3. According to the value of the error evaluation standard in the two tables, the algorithm proposed in 

this paper has a better prediction ability. 

 

 

5. CONCLUSION 

Aiming at the problem that the input weights and bias of ELM are randomly generated, which 

will affect the prediction results, this paper optimizes the weights and bias. The proposed optimization 

algorithm is based on the idea of mutation of GA and adds the mutation factor to the particle swarm 

optimization algorithm so as to improve the ELM algorithm, that is, the MPSO-ELM algorithm. The 

algorithm was applied to the RUL prediction of lithium-ion batteries. In experiment, we first compare 

the proposed method with the similar algorithm: ELM and PSO-ELM methods, and then we compare 

with some methods mentioned in the INTRODUCTION section. All these methods are based on the 

same data set. The results show that the MPSO-ELM algorithm is an effective RUL prediction method. 
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