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Anodic oxide films were formed on commercially pure titanium by using a sulfuric acid anodizing 

process. The surface characteristics and corrosion behavior were evaluated via atomic force 

microscopy, X-ray photoelectron spectroscopy, polarization curves, electrochemical impedance 

spectroscopy, and scanning electron microscopy. The results revealed the hill-and-valley-like 

topography of, and nano-scale holes occurring in, the anodic oxide film. These holes increased in size 

and the oxidation degree of the film improved with increasing potential. Furthermore, the 

electrochemical test results revealed that the corrosion resistance of the film depends mainly on the 

dense inner oxide film. The oxide film obtained at high potential is less susceptible to corrosion 

compared with those formed at low potentials. The possible corrosion process of the oxide film is 

discussed. We believe that the corrosion of the film is closely correlated with the action of Cl
− 

ions. 

Defects on the film surface immersed in a NaCl solution will be damaged first, due to the invasion of 

Cl
−
, leading to the formation of corrosion holes. Micro-cracks will form when adjacent holes become 

interconnected via corrosion. 

 

 

Keywords: Anode oxidation; titanium oxide film; electrochemical characterization; corrosion 

resistance  

 

 

1. INTRODUCTION 

Anodic oxidation is a simple and low-temperature surface treatment commonly employed to 

thicken the oxide film on Titanium (Ti) and its alloys. This treatment improves the corrosion or wear 

resistance, external features, and the ability for adhesive bonding of the film [1–3]. Anodization of Ti 

and its alloys has been used in several fields, such as corrosion protection [4,5], solar energy 

conversion [6,7], batteries [8], photo-catalytic engineering [9], and biomedical engineering [10,11]. 
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The suitability of anodized titanium for specific applications depends on the surface features, structure, 

and composition of the coating [12]. A study of the titanium oxide (TiOx) film surface, which provides 

insights into tailoring of the TiOx film for specific applications, is therefore essential. 

The use of Ti and its alloys in various fields depends on the corrosion resistance of these 

materials. This resistance, in turn, depends on the thin, stable, inert, and self-adherent passive oxide 

film (formed on the surface), which inhibits corrosion in highly oxidizing environments [13]. The 

corrosion of Ti and its alloys has been extensively investigated. For example, Fadl-allah and Mohsen 

[1] investigated the corrosion behavior of commercially pure Ti in sulfuric and phosphoric acid 

solutions. Ningshen et al. [13] investigated the corrosion performance of Ti–Ni–Pd–Ru–Cr alloy in a 

NaCl solution, the corrosion behavior of this anodic film in the electrolyte. However, the governing 

corrosion mechanism of these materials has scarcely been investigated. 

Therefore, in this work, an anodic oxide film was formed on the surface of pure Ti (TA2) by 

using a sulfuric acid anodizing process. The surface topography and chemical composition of the film 

were determined via atomic force microscopy and X-ray photoelectron spectroscopy (XPS), 

respectively. The prepared samples were then immersed in a Cl
−
–containing solution, under an open 

circuit potential. Subsequently, the corrosion characteristics and properties of the TiOx films were 

evaluated via scanning electron microscopy (SEM), polarization curves, and electrochemical 

impedance spectroscopy (EIS). The oxide capacitance characterizing the relationship with the oxide 

thickness was calculated by the parallel plate capacitor model [12]. The present study focuses on the 

corrosion behavior of these films in an electrochemical etching solution. In addition, a possible 

corrosion mechanism is discussed. 

 

 

 

2. EXPERIMENTAL 

The chemical composition of the pure Ti used in this work is summarized in Table 1. The 

material was cut into 100 mm × 25 mm × 0.1 mm specimens, which were subsequently ground with 

1000–2000 grit SiC paper, and ultrasonically cleaned with acetone and distilled water. These 

specimens were then electrochemically polished in a 0.5 M sulfuric acid solution at 25C. The 

specimen and graphite sheet, designated as the cathode and anode, respectively, were subjected to a 

constant potential for 3 min, rinsed in distilled water, and dried in an oven.  

 

Table 1. Chemical composition of TA2 

 

Element O N C H Fe Si Ti 

Mass fraction (%) 
 

0.15 

 

0.05 

 

0.05 

 

<0.015 

 

<0.30 

 

<0.15 

 

Balance 

 

Using a regulated DC power supply, the polished specimens were anodized at room 

temperature in a 1.84 M sulfuric acid electrolyte solution containing methyl sulfonic acid. The passive 

films were formed after 1800 s at anodization potentials of 5 V, 25 V, and 50 V.  
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The three-dimensional surface profiles of the anodic oxide films were obtained by using an 

atomic force microscope (AFM, Nanoscope V, MultiMode®8, Bruker). In addition, the composition of 

each film was determined via X-ray photoelectron spectroscopy (XPS, ULVAC-Physical Electronics), 

using MgK radiation. The corresponding peak-fitting procedure was performed using the ULVAC-

PHI MultiPak 9.3 software, and the spectral positions were all corrected by normalizing the C1s 

spectrum at 284.6 eV. 

The anodized specimens were immersed for 30 h in a 3.5 wt.% NaCl solution under an open 

circuit potential and potentiodynamic polarization curves were obtained during this immersion. 

Measurements were performed at a scanning rate of 1 mV/S. EIS was conducted at room temperature 

using a CHI760E electrochemical workstation in a three-electrode cell containing the NaCl solution. 

The specimen (surface area: 1 cm
2
) was used as the working electrode; a saturated calomel reference 

electrode and a platinum counter electrode constituted the other electrodes in the cell. The EIS 

measurements were performed over a frequency range of 100 kHz–0.01 Hz, and at a perturbation 

amplitude of 5 mV. An initial delay of 300 s was used to obtain a stable testing system [14]. The 

corrosion morphologies of the specimens immersed for 30 h in a 3.5 w.t% NaCl solution were 

characterized using a Phillips XL30 scanning electron microscope. 

 

3. RESULTS AND DISCUSSION 

3.1. Surface characterization of the oxide film 

The hill-and-valley-like topographies of the anodic oxide film formed in the H2SO4 solution are 

shown in the atomic force microscopy (AFM) images of Fig. 1. The film formed at an oxidation 

potential of 5 V exhibited uniform hill morphology (Fig. 1a), whereas a coarse and uneven hill-and-

valley-like topography, with uniformly sized nano-scale holes in the center of the hills, was obtained at 

25 V (Fig. 1b). When the potential was increased to 50 V (Fig. 1c), these holes transformed into 

concave holes on the valleys. This porous morphology has been attributed to the gas evolution [15,16] 

that accompanies hill formation. A compressive stress, generated by the swelling and extrusion of 

these hills, leads, in turn, to the formation of micro-cracks. These cracks will then be replaced by pores 

when the energy in the films increases with further increases in the voltage. 

 

 

 

Figure 1. Atomic force microscope (AFM) images of the anodic oxide film formed at anodization 

potentials of (a) 5 V, (b) 25 V, and (c) 50 V 

(b)    (c)    (a)    
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Figure 2 shows a full XPS spectrum of the anodic oxide film formed at each oxidation 

potential. As the figure shows, the elements Ti, O and C appear in the surface layer of each film. The 

C1s peaks result from contamination of the specimens.  
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Figure 2. XPS survey spectrum of the anodic oxide film formed on Ti 

 

The Ti2p peaks in the XPS spectra are decomposed into Ti2p3/2 and Ti2p1/2, depending on the 

electron spin-orbit coupling. Figure 3 shows the Ti2p survey spectrum of the film as a function of the 

potential applied to pure Ti. At an anodic oxidation potential of 5 V, the oxide film consists mainly of 

TiO2, a small amount of Ti2O3, Ti metal, and titanium hydroxide (Fig. 3a). The presence of trace Ti 

metal indicates that the metal surface is only partially oxidized [17]. Figure 3b and c show the Ti2p 

peaks of the film formed at potentials of 25 and 50 V. Consistent with previous studies [4,18], doublet 

peaks occurred at binding energies of 458.2 and 463.9 eV, for TiO2, and 456.59 and 460.7 eV, for 

Ti2O3. Furthermore, the absence of metallic Ti after anodization at 25 and 50 V indicates that the 

surface was completely oxidized. Figure 4 shows the corresponding O1s spectra of the film. These 

spectra can be deconvoluted into three peaks, namely: Ti–O (~530 eV), Ti–OH (~531 eV), and H–O–

H (~532 eV) [12].  
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Figure 3. Ti2p XPS survey spectrum of the anodic oxide film formed under applied potentials of (a) 5 

V, (b) 25 V, and (c) 50 V 
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Figure 4. O1s XPS survey spectrum of the anodic oxide film formed under applied potentials of (a) 5 

V, (b) 25 V, and (c) 50 V 

 

The anodic oxides on the pure Ti surface consist mainly of TiO2, a small amount of Ti2O3 and 

titanium hydroxide. In addition, the oxidation degree of the film increased with increasing potential, as 

evidenced by the intensity of the peaks shown in Fig. 3 and Fig. 4.  

 

3.2 Electrochemical characterization 

Figure 5 shows the potentiodynamic polarization curves measured after immersing the films in 

a NaCl solution for 30 h. The curves exhibit similar trends. The hydrogen evolution reaction of H2O or 

H
+
 constitutes the main process in the cathodic region. In the anodic region, the current density 

increases with increasing potential due to the activation polarization arising from the corrosion 

potential. Thereafter, the current density remains constant with increasing potential, indicating the 

successful formation of anodic oxide films in this region [19]. 
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Figure 5. Potentiodynamic polarization curves of the anodic oxide films formed after 30 h of 

immersion in NaCl solution 
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The corrosion potential (Ecorr) and corrosion current density (icorr; see Table 2) can be 

determined via the polarization curve extrapolation method [20]. As the table shows, the anodized 

samples exhibit passive behavior and have low icorr values. Furthermore, the Ecorr varies only slightly, 

whereas icorr decreases significantly with increasing potential (from 5 to 50 V). Low icorr values 

indicate that the passive film is only slowly corroded [21], and hence, provides excellent protection to 

the bare metal.  

 

 

Table 2.  Results of the corrosion resistance test performed in 3.5 wt.% NaCl solution 

 

Sample Corer/mV βa/V βc/V Rp/Ω.cm
2
 Icorr/A.cm

-2
 

5 V −0.176 0.15 9.57 1.6×10
5
 3.987×10

−7
 

25 V −0.231 2.02 10.30 6.9×10
6
 1.058×10

−7
 

50 V −0.287 1.85 19.3 7.4×10
6
 9.859×10

−8
 

 

Figures 6 and 7 show the result of the EIS test performed after 30 h of immersion of the 

anodized commercially pure titanium. The Nyquist plots (Fig. 6) exhibit similar trends, i.e., an 

incomplete and depressed semicircle is formed in all cases [22]. In addition, the semicircles associated 

with Ti prepared at 5 and 25 V have almost the same diameter, but are narrower than the semicircle 

associated with Ti prepared at 50 V. The diameter of the semicircle is proportional to the magnitude of 

the polarization resistance [23–25]. Therefore, the oxide film obtained at high potential (for example, 

50 V) is more resistive than those formed at lower potentials.  
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Figure 6. Nyquist plot of the anodic oxide film formed at different potentials after 30 h of immersion 

 

Each of the Bode magnitude plots shown in Fig. 7a consist of two distinct regions. The high-

frequency region (10
4
–10

5
 Hz) is characterized by a plateau (slope: 0), which is correlated with the 

electrolyte resistance response. In the low- and mid-frequency range, the impedance varies linearly 
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(slope: 1) with the frequency, consistently with the occurrence of a capacitive load [26,27]. The high-

frequency region of the Bode phase diagram shown in Fig. 7b is characterized by a phase angle of 0°, 

corresponding to the electrolyte resistance. Similarly, a phase angle of approximately −80° in the 

intermediate-frequency region is indicative of a capacitive load. A sharp peak phase angle occurs in 

each of the high- and low-frequency regions, consistently with the formation of a duplex passive film 

structure (a compact inner layer and a porous outer layer) on Ti [28].  
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Figure 7. Bode plots of the anodic oxide film formed at different potentials after 30 h of immersion in 

NaCl solution: (a) Bode magnitude plots and (b) Bode phase plots 

 

The equivalent circuit (see Fig. 8) was selected based on the EIS results and fitting of the 

experimental data with the ZSimpWin software. An Rs(Qp(Rp(QbRb))) circuit model with two time 

constants was used to fit the passive film obtained at low potential (5 V), whereas an Rs(QpRp)(QbRb) 

model was used for films formed at higher potentials (25 V and 50 V). In the equivalent circuit (Fig. 

8), RS represents the solution resistance; Qp and Qb denote the constant phase elements [29], 

corresponding to the non-ideal capacitances of the porous outer layer and the compact inner layer, 

respectively; Rp and Rb represent the resistance of the porous outer and compact inner layer, 

respectively. 

 

 

 

Figure 8. Equivalent circuit model 
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The electrochemical parameters obtained from the equivalent circuit are listed in Table 3. The 

low value (10
−3

) of χ
2
 indicates that the test results correspond closely to the fitting results. Moreover, 

the n value, which is indicative of the roughness of the metal-oxide interface [30], increases with 

increasing smoothness of the interface. The value of RS is only slightly affected by the processing 

conditions. The Rb values are substantially higher than their Rp counterparts, indicating that the 

corrosion resistance of the Ti passive films stems mainly from the compact inner layer. Furthermore, 

Qb decreases whereas Rb increases with increasing oxidation potential, indicating that the oxide film 

obtained at high potential is less susceptible to corrosion than those formed at low potential. Similarly, 

when the voltage is increased, Qp increases whereas Rp decreases, due possibly to the thinning of the 

porous outer layer. 

 

Table 3. Electrical parameters obtained from the equivalent circuit of anodic films formed on TA2 

pure Ti 

 

 

Electrical parameters obtained via EIS fitting 

RS 

(Ω·cm
2
) 

Qp×10
−6 (Fcm

-2
) n p Rp (Ω·cm

2
) Qb×10

−6 (Fcm
-2

) nb Rb (Ω·cm
2
) χ

2
×10

-3
 

5 V 
8.606 3.171 0.8 1288 4.267 0.8 2.99×10

6
 6.27 

25 V 
7.217 6.088 0.8 217 3.945 0.9 3.5×10

6
 2.22 

50 V 
8.78 9.298 0.91 203 1.26 0.83 5.02×10

6
 8.03 

 

3.3 Corrosion characterization 

Table 4. Thickness of passive films calculated by the model 

 

Samples 5 V(nm) 25 V(nm) 50 V(nm) 

Thickness of porous outer layer 16.75 8.72 5.71 

Thickness of compact inner layer 12.44 13.46 42.14 

Total thickness 29.19 22.18 47.85 

 

The corrosion resistance of Ti and its alloys is influenced by factors such as the composition, 

microstructure, structure, and environment [19]. This resistance is also significantly influenced by the 

thickness of the passive film. The theoretical value of the film thickness may be calculated from [31]:  

C

A0d



                      (1) 

where d, ε, ε0, A, and C are the thickness of the passive film, the dielectric constant of the film, the 

dielectric permittivity of vacuum (ε0 = 8.85×10
−12

 F/m), the effective area of the passive region (1 

cm
2
), and the fitting capacitance value (which is equivalent to the capacitance Q), respectively. 
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Although the passive-film thickness values may be lower than the actual thickness, their values can 

still be used to determine the corrosion resistance of films. We assume an ε of 60 duo for the Ti 

passive film composed of TiO2, Ti2O3, and metal Ti [27]. The calculated values are all listed in Table 

4. Passive films with comparable thicknesses are obtained at 5 V and 25 V, but significantly thicker 

films are formed at 50 V. This indicates that the corrosion resistance improves considerably when the 

oxidation voltage is increased to 50 V. 

 

 

 

Figure 9. Surface morphologies of the anodic oxide films formed on Ti after immersion in 3.5 wt.% 

NaCl solution for 30 h ((a,b,c) 5 V, (d,e,f) 25 V, (g,h,i) 50 V) 

 

Figure 9 shows surface micrographs of the anodic oxide films formed at various oxidation 

potentials after 30 h of immersion in a 3.5 wt.% NaCl solution at room temperature. Millimeter-long 

cracks occur in the surface-oxide film formed at 5 V (see Fig. 9a). A high-magnification image reveals 

significant corrosion patterns and micron-sized holes (Fig. 9b). Further magnifications reveal the grain 

structure of industrial Ti (Fig. 9c), indicating that the oxide film on the Ti surface is partially removed 

(d) (e) (f) 

(g) (h) (i) 

(a) (b) (c) 
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during the immersion process. The surface of the film formed at 25 V is resistant to micro-cracking 

(Fig. 9d), but high-magnification images revealed significant corrosion patterns and a number of holes, 

albeit less than those formed at 5 V (Fig. 9e, f), and the surface morphology of industrial pure Ti is 

absent. When the oxidation potential is further increased to 50 V, a few micron-sized pores form on the 

surface of the film, which remains crack-free (Fig. 9g). The "pine-like" shaped regular objects shown 

in Fig. 9h are closely correlated with the crystallization. High-magnification images revealed that the 

surface of the film is very flat and has undergone only a small amount of rupturing (Fig. 9i). As in the 

river-like pattern of the fabric, the surface of the film formed at 50 V consists of many white, regular-

shaped features.  

The EDS analysis results of the oxide film immersed in NaCl solution for 30 h are shown in 

Fig. 10. The surface of the film formed at a potential of 5 V after immersion is composed of three main 

elements: Ti, O, and C (Fig. 10a), which account for mass percentages of 86.7%, 9.2%, and 4.1%, 

respectively. Furthermore, the oxygen content is very low, indicating that part of the film was removed 

by Cl
−
 etching, as previously suggested by the results shown in Fig. 9. C may have resulted from 

surface contamination. Figure 10b shows the surface EDS results of the oxide film formed when 50 V 

are applied after immersion. The main elements, Ti, O, Na, Cl, C, and S, account for mass percentages 

of 45.6%, 24.1%, 14.3%, 10.6%, 5.0%, and 0.4%, respectively. Figure 10b shows that NaCl results 

from the etching solution attached to the film. In fact, NaCl and TiOx were detected on the "pine-like" 

shaped regular crystals shown in Fig. 9h, indicating that their crystallization is induced by the high 

potential. The detected S stems from the anodic oxidation electrolyte, and (as previously stated) C is 

associated with surface contamination of the sample. Similarly, the contents of O and Ti in the film 

formed at high potential are higher and lower, respectively, than those of the film formed at low 

potential. This indicates that the oxide film is only slightly eroded and the Ti matrix remains 

unexposed. 
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Figure 10.  EDS images of the anodic oxide films formed on titanium after immersion in 3.5 wt.% 

NaCl solution for 30 h at (a) 5 V and (b) 50 V 
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The foregoing analysis reveals that defects, such as incomplete regions and thin regions, always 

occur in the oxide film. The defective film immersed in the NaCl solution will be initially damaged by 

the invasion of Cl
−
, leading to the formation of corrosion holes. The TiOx in the pores dissolves under 

the action of Cl
−
, resulting in the formation of Ti

4+
, which is highly susceptible to hydrolysis (as shown 

in Reaction (2)), and consequently leading to increased acidity in the pores. This promotes the 

diffusion of Cl
−
 into the hole, resulting in an increase in the Cl

−
 concentration of the hole. Moreover, 

the corrosion products (Ti(OH)4) of Ti
4+

, resulting from the hydrolytic reaction, accumulate outside the 

pores, hence, the concentration of Cl
−
 in the cavity is substantially higher than the one outside. The low 

pH and high Cl
−
 concentration in the pores lead to increased corrosion of the defective oxide film and, 

in turn, to a deepening and widening of the pores. Moreover, micro-cracks will form when the nearby 

pores are interconnected by corrosion. 

Ti
4+

 + 4H2O→Ti (OH)4 + 4H
+
 (2) 

The oxide films formed at low potentials are thinner than those formed at high potentials and 

are therefore more susceptible to corrosion by Cl
−
, resulting in the formation of millimeter-scale cracks 

(Fig. 9a); some of the weaker oxide films are moved due to corrosion. The film formed at high 

potential is thicker than those formed at low potentials and can thus hinder Cl
-
 penetration in the Ti 

matrix, thereby limiting corrosion. Therefore, the morphology of the pure Ti matrix remains 

unexposed, millimeter-scale cracks are limited, and only limited holes and breakages are formed (Fig. 

9f and i). 

 

 

4. CONCLUSIONS 

 The surface characteristics and electrochemical corrosion behavior of anodic oxide films 

formed on commercially pure Ti in 1.84 M sulfuric acid were investigated. These films exhibited hill-

and-valley-like topography and consisted of nano-scale holes, which increased in number and size with 

increasing applied potential. The film obtained at high potential consisted mainly of TiO2, a small 

amount of Ti2O3, and titanium hydroxide. On the other hand, the anodic oxides formed at low potential 

consisted of metallic Ti (in addition to TiO2, Ti2O3, and titanium hydroxide), indicating that the 

oxidation degree of the film improved with increasing potential.  

The electrochemical test results revealed that the corrosion resistance of the oxide film is 

mainly related to the dense inner oxide film. When the oxidation potential is increased, the resistance, 

Rb, of the inner layer increases and the capacitance, Qb, decreases. This indicates that the oxide film 

obtained at high potential is less susceptible to corrosion than those formed at low potential. The 

corrosion resistance of the film also depends on its thickness, which was therefore calculated for both 

the inner and outer films as an indicator of corrosion resistance. These calculations revealed that the 

films formed at 5 and 25 V have similar total thickness, but are significantly thinner than the film 

formed at 50 V, which  exhibits better corrosion resistance than its thinner counterparts. 

The possible corrosion process of the oxide film is discussed. We believe that the corrosion of 

the oxide film is closely related to the action of Cl
−
. Some defects in the film surface immersed in 

NaCl solution will be damaged first, due to the invasion of Cl
−
, leading to the formation of corrosion 
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holes. Micro-cracks are formed when adjacent pores become interconnected during corrosion. 

Compared with the thick film formed at high potential, the thin films formed at low potentials are more 

susceptible to corrosion by Cl
−
, and millimeter-scale cracks are formed; in fact, some of the weaker 

oxide film was removed by corrosion. The aforementioned thick oxide film can hinder Cl
−
 penetration 

of the Ti matrix, thereby resulting in limited pore formation and breakage. 
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