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The inhibition proprieties of two phenothiazinyl-thiazolyl-hydrazine derivatives, namely (E)-ethyl 2-

(2-((10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazinyl)thiazole-4-carboxylate (CxTP) and (E)-10-

ethyl-3-((2-(4-phenyl thiazol-2-yl)hydrazono)methyl)-10H-phenothiazine (PhTP) on carbon steel 

corrosion in 1.0 M HCl solution were studied at various concentrations, temperatures and exposure 

times using electrochemical techniques, SEM-EDX and quantum chemical calculations. 

Potentiodynamic polarization revealed that the phenothiazinyl-thiazolyl-hydrazine derivatives act as 

mixed-type corrosion inhibitors; their inhibition efficiency increases with increasing the inhibitors 

concentration (91.6% at the optimal concentration of 150 µM for CxTP) and slightly decreases at 

elevated temperatures and after 24 hours exposure to the corrosive solution. Based on the 

electrochemical impedance spectroscopy results, two suitable structural models of the carbon steel/1.0 

M HCl interface were proposed to describe the processes taking place in the absence and in the 

presence of the organic inhibitors, respectively. The adsorption of the organic inhibitors on carbon 

steel surface obey Langmuir isotherm. SEM-EDX investigations confirmed that the phenothiazinyl-

thiazolyl-hydrazine derivatives are able to significantly retard the carbon steel dissolution. Density 

functional theory was used to understand the nature of the interactions between the protonated organic 

molecules and the metallic surface.  
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1. INTRODUCTION 

Carbon steels materials are extensively used in various industries, including automotive, 

aircraft, petroleum production and refining, marine applications, chemical and defence, since they 

balance excellent mechanical properties and a reduce cost [1, 2]. Nevertheless, these alloys are highly 

susceptible to severe dissolution when exposed to HCl solution during several industrial processes, 

such as acid pickling, cleaning, descaling and oil well acidizing [3], causing important structural 

damages and economic losses [4]. 

The use of corrosion inhibitors is one of the most convenient and cost-effective strategy to 

minimize the steel dissolution in acid media. As result, numerous organic compounds containing 

heteroatoms with electron lone pair (P, N, S, O), conjugated multiple π-bonds and/or aromatic rings in 

their molecular structures have been reported as effective inhibitors for steel corrosion in HCl media. 

The inhibiting properties of these organic inhibitors is usually attributed to their adsorption on the 

metal surface via different mechanisms, involving coordinate covalent bond (chemical adsorption) 

and/or electrostatic interaction between the organic molecule and the metal (physical adsorption) [5, 

6]. However, the adsorption process is rather complex and depends on several factors, including the 

nature and charge of the metal, the electrolyte type and the electronic properties of the organic 

compound, such as steric effects, electronic density of the donor atoms and the orbital character of the 

donating electrons, aromaticity, the presence of different functional groups, i.e. -CHO, -N=N-, R-OH 

etc. [7, 8]. In many cases, the inhibiting efficiency of the heterocyclic compounds was found to 

increase with the number of the electron-rich structures, due to their improved ability to share the lone 

pair electrons with the metal substrate [7]. Consequently, many organic molecules possessing donor 

atoms and various functional groups in their core, i.e. mercapto-functionalized thiadiazole derivatives 

[9-11], Schiff bases [12-16], pyranpyrazole derivatives [17], thiocarbohydrazides [18], thiazolo-

pyrimidine derivatives [19], phenothiazine derivatives [20-22], phenylthiazole derivatives [23] and 

hydrazide derivatives [24] have shown high inhibition effectiveness for steel corrosion in acid media. 

Phenothiazinyl-thiazolyl-hydrazine derivatives represent a class of heterocyclic compounds 

obtained by assembling the hydrazino-thiazolyl group and the phenothiazine nucleus in the same 

molecular structure [25], which have recently shown to present antiproliferative activity against 

tumour cell. Phenothiazinyl-thiazolyl-hydrazine derivatives possess several anchoring sites suitable for 

surface bonding, i.e. N and S atoms with lone n and p electrons from the phenothiazine core and 

hydrazino-thiazolyl group, which make this class of organic compounds proper candidates for 

corrosion inhibition. To the best of our knowledge, the anticorrosive properties of any phenothiazinyl-

thiazolyl-hydrazine derivative against steel have not been experimentally investigated and reported, 

yet. 

The aim of the present work is to study the inhibitive properties of two phenothiazinyl-

thiazolyl-hydrazine derivatives on carbon steel corrosion in 1.0 M HCl solution, using 

potentiodynamic polarization, electrochemical impedance spectroscopy and SEM-EDX investigations. 

In addition, quantum chemical calculation method was applied to explain the interactions between the 

organic molecules and the carbon steel surface and to assess the corrosion inhibition mechanism. It 
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should be also mentioned that one of the investigated phenothiazinyl-thiazolyl-hydrazine derivative is 

a newly synthetized compound that has been reported and characterized for the first time in this paper. 

 

2. EXPERIMENTAL 

2.1. Reagents 

The corrosive blank solution of 1.0 M HCl was prepared by dilution of the analytical grade 

37% reagent (Merck) with double distilled water.  

The phenothiazinyl-thiazolyl-hydrazine derivatives proposed as corrosion inhibitors in the 

present study were synthetized according to a procedure previously reported [25]. The molecular 

structures of the organic compounds are shown in Fig. 1. 

 

 
(E)-ethyl2-(2-((10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazinyl)thiazole-4-carboxylate (CxTP) 

 
(E)-10-ethyl-3-((2-(4-phenyl thiazol-2-yl)hydrazono)methyl)-10H-phenothiazine (PhTP) 

 

Figure 1. Chemical structures of the investigated phenothiazinyl-thiazolyl-hydrazine derivatives 

 

The chemical and structural characterisation of PhTP was formerly described [25]. Instead, 

CxTP is a newly synthetized compound which has never been reported. Therefore, after its synthesis, it 

was fully characterized by spectroscopic measurements. The melting point was determined with an 

Electrothermal IA 9200 digital melting point apparatus and is uncorrected. Elemental analysis was 

performed using a Vario EL III instrument and 
1
H NMR spectra was recorded in DMSO-d6 on a WM-

400 MHz Bruker NMR spectrometer. The results of the spectroscopic investigations performed on 

CxTP are presented below. 

(E)-ethyl2-(2-((10-ethyl-10H-phenothiazin-3-yl)methylene)hydrazinyl)thiazole-4-carboxylate 

Purification by recrystallization from ethanol. Yellow crystals, yield 7        g , m p     -  5   C 
1
H NMR (400 MHz, DMSO d6  δ  ppm : 1  1  t,  H, 

3
J = 7.3 Hz, -CH3), 1.44 (t, 3H, 

3
J = 7.1 

Hz, -CH3), 3.94 (q, 2H, 
3
J = 7.1 Hz, N-CH2), 4.31 (q, 2H, 

3
J = 7.3 Hz, O-CH2), 6.18 (s, 1H, Th-H5), 
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6.82 (d, 1H, 
3
J = 8.6 Hz, H1), 6.9 (d,1H, 

3
J = 7.6 Hz, H9), 6.91 (t, 1H, 

3
J = 7.6 Hz, H7), 7.14 (dd, 1H, 

3
J 

= 7.6 Hz, H6), 7.18 (t, 1H, 
3
J = 7.6 Hz, H8), 7.39 (dd, 1H, 

3
J = 8.6 Hz, H2), 7.45 (s, 1H, H4), 7.81 (s, 

1H, CH=N), 9.53 (s, 1H, -NH). 

Anal. Calcd. for C21H20N4O2S2 (%): C, 59.41; H, 4.75; N, 13.20; S, 15.11. Found (%): C, 

59.85; H, 4.71; N, 13.24; S, 15.17.  

Due to low solubility of the phenothiazinyl-thiazolyl-hydrazine derivatives in water, in order to 

prepare solutions containing different concentrations of inhibitors, appropriate weighted amounts of 

organic compounds were firstly dissolved in 10 mL mixture of ethanol and acetone (3:1, v:v). Then, 

the blank solution was added to obtain 100 mL inhibitor-containing solutions, in which the 

phenothiazinyl-thiazolyl-hydrazine concentrations lay in the range from 25 to 150 µM. 

 

2.2. Electrochemical measurements 

All electrochemical experiments were conducted in a three-electrode glass cell. A carbon steel 

cylinder (S=0.5 cm
2
) embedded in epoxy resin (Buhler, Epoxycure

TM
) was used as working electrode. 

The counter-electrode was made of a large platinum foil, whilst a calomel electrode in saturated KCl 

(SCE) was used as reference electrode. The chemical composition of carbon steel was as follows (wt. 

%): 0.37 C, 0.47 Mn, 0.01 P, 0.04 Si, 0.029 S and balance Fe. 

Prior to each experiment, the surface of C-steel was prepared via an abrading procedure, using 

successive grade of silicon carbide paper grit (from 600 up to 2400), rinsed with distilled water and 

ethanol and then immediately inserted into a glass-cell containing 100 mL of electrolyte solution.  

All electrochemical measurements were performed at open-circuit potential after 1-hour 

immersion of C-steel electrode in 1.0 M HCl solution, in the absence and presence of the inhibitors. A 

PARSTAT model 2273 potentiostat was used for electrochemical measurements. The corrosion tests 

were performed in the electrolytes, under non-stirred and naturally aerated conditions at room 

temperature (20
0
 C). 

Electrochemical impedance spectroscopy (EIS) measurements were carried out in the 

frequency range from 100 kHz to 10 mHz at 10 points per hertz decade with an AC voltage amplitude 

of ± 10 mV. The impedance data were interpreted based on equivalent electrical circuits using the 

ZSimpWin V3.21 software for the experimental data fitting.  

Polarization curves were recorded at constant sweep rate of 10 mV min
−1

, in a wide potential 

range of ± 250 mV vs. OCP from the cathodic to the anodic direction. In order to determine the 

influence of the temperature on the C-steel corrosion rate, polarisation measurements were also 

performed at various temperatures, ranging from 25
0
 C to 55

0
 C.  

 

2.3. SEM–EDX measurements  

For morphological studies, the C-steel surface was prepared by immersing the electrodes 

during 6 h in 1.0 M HCl, in the absence and in the presence of the organic compounds. Then, the 

specimens were washed gently with distillated water, carefully dried and characterized without any 
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further treatment by scanning electron microscopy (SEM). The SEM measurements were performed 

using a JEOL JSM 5600 LV microscope, equipped with an Oxford Instruments energy dispersive X-

ray spectrometer (EDX). The energy of the acceleration beam employed was 15 kV and the given 

results are 500 × magnifications.  

 

2.4. Quantum chemical calculation 

For a better understanding the corrosion inhibition properties on molecular level, the structure 

of the phenothiazinyl-thiazolyl-hydrazine derivatives and their protonated forms were studied by 

molecular modelling tools as Density Functional Theory (DFT) using hybrid B3LYP, 6-31G* [26] 

offered by Spartan 06 software. 

 

3. RESULTS AND DISCUSSION 

3.1. Electrochemical impedance spectroscopy 

3.1.1. Influence of the inhibitors concentration 

 
Figure 2. Nyquist diagrams  a, b  and Bode plots  a‘, b‘  recorded on C-steel surface in 1.0 M HCl 

solution in the absence  □  and in the presence of different concentrations of phenothiazinyl-

thiazolyl-hydrazine derivatives (µM): 25 (○); 50 (Δ); 75 ( ); 100 (⌂); 125 (◊); 150 (   ). The 

insert presents the Nyquist diagram for C-steel corrosion in 1.0 M HCl in enlarged scale (a). 

Symbol (—+—) corresponds to the fitted data. The numbers in Nyquist diagrams (a, b) refer to 

frequency in Hz. 
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Fig. 2 shows the Nyquist diagrams for C-steel after 1 h immersion in 1.0 M HCl solution in the 

absence and presence of different concentrations of organic inhibitors at room temperature (20 
0
C). 

In the blank solution, the impedance spectra consist of a capacitive loop at high to medium 

frequencies, followed by a small inductive loop in the low-frequency region. The addition of the 

organic compounds in the corrosive solution changes the impedance response of C-steel surface. Thus, 

two depressed capacitive loops although not always very well-separated could be observed in the 

impedance spectra of C-steel exposed to inhibitor-containing solutions. The first capacitive loop 

appearing at high frequency region was attributed to the charge transfer process, while the second one 

at lower frequencies might be related to the adsorption of inhibitor molecules on the metallic surface 

[27, 28]. As readily seen in Fig. 2, the diameters of the capacitive loops obtained in the presence of 

CxTP and PhTP are considerably larger than observed in the blank solution and increase markedly 

with increasing the organic inhibitors concentration. This behaviour points out to an inhibitive effect 

exerted by the two organic compounds on C-steel corrosion in 1.0 M HCl. It is also worth mentioning 

that the change in the CxTP and PhTP concentration did not significantly modify the shape of the 

impedance diagrams suggesting that a similar inhibition mechanism was involved. 

Further information on the electrochemical processes occurring at the electrode-solution 

interface was obtained by the analysis of impedance spectra using suitable electrical equivalent 

circuits.  

Fig. 3a shows the equivalent circuit used for the uninhibited C-steel interface simulation. In this 

model, Re denotes the electrolyte resistance, while the parameters Rct and Qdl describe the charge 

transfer process at the C-steel/1.0 M HCl interface. Although an inductive loop was also observed at 

low frequencies in the impedance spectra corresponding to uninhibited C-steel, we omitted to further 

analyse it, since its origin is rather uncertain. A similar approach was used by Bentiss [29], which 

explained that the low-frequency inductive loop could be attributed to the adsorption of species 

resulting from the iron dissolution or to the adsorption of the hydrogen. 

 
       (a)        (b) 

Figure 3. Electrical equivalent circuit used to fit the impedance data C-steel corrosion in the absence 

(a) and in the presence of the phenothiazinyl-thiazolyl-hydrazine derivatives (b) 

 

The proposed equivalent circuit for the interpretation of EIS data obtained in inhibitors-

containing solutions is shown in Fig. 3b. In this circuit Ra represents the resistance of the adsorbed 

inhibitor and Qa corresponds to the capacitance of the inhibitor film due to the organic compounds 

adsorption on C-steel surface [15, 27]. Similar equivalent circuits were previously used to simulate the 

impedance data for C-steel [28] or mild steel [27, 30] corrosion in HCl in the presence of organic 

inhibitors. 
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To get more accurate fit of the experimental data, constant phase elements (CPE) were 

substituted for the pure capacitive elements allowing to explain the depressed features of the 

impedance diagrams, which corresponds to the surface heterogeneities arising from surface roughness, 

impurities, dislocations, grain boundaries, inhibitor adsorption, porous layers, etc.  

The impedance function of CPE parameter is given by the following equation [31]: 

CPE(ω) = [Q(jω)
n
]
−1

        (1) 

where j is an imaginary number ( ); ω = 2πf is the angular frequency in rad·s
−1

; n is the 

exponent which defines the character of frequency-dependence (-1 ≤ n ≤ 1   The CPE could represent 

a circuit parameter with limiting behaviour as a capacitor for n = 1, a resistor for n = 0, and an inductor 

for n = -1 [32]. The values of n are associated to the non-uniform distribution of current due to the 

roughness of the metallic surface, the presence of the inhibitor molecules etc. 

The proposed equivalent circuits suitably reproduce the impedance data corresponding to C-

steel corrosion in the absence and in the presence of the organic compounds as revealed in Fig. 2, 

where a good agreement between the experimental and simulated data was obtained. The error 

percentages obtained for each component of the equivalent circuits were generally below 10%, 

confirming that the experimental data adjusted well to the proposed circuits. The corresponding fitting 

parameters are given in Table1.  

In Table 1 are also listed the values of the pseudo-capacitances associated with the CPE 

parameters, calculated using the following equation:  

  nnCPERC
/11 )(         (2) 

As shown in Table 1, the charge-transfer resistance, Rct values increase gradually with 

increasing the phenothiazinyl-thiazolyl-hydrazine derivatives concentration and reach their maximum 

values of 469.7 Ω cm
2
 and 390.6 Ω cm

2
 at the concentration of 150 µM, in the presence of CxTP and 

PhTP, respectively. The higher values of Rct obtained in the presence of the organic compounds as 

compared to the blank solution (Rct = 81.1 Ω cm
2
) should be related to a slower corroding system [24] 

due to the inhibitors adsorption on the C-steel surface.  

In the absence of the inhibitors, the double layer capacitance, Cdl has a relatively high value of 

109.7 µF cm
-2

, which might be explained by the accumulation of corrosion products on the rough C-

steel surface. The addition of the organic compounds in the corrosive solution leads to a decrease of 

the Cdl values and this tendency is more pronounced at higher concentrations of inhibitors. The lowest 

Cdl values of 9.5 µF cm
-2

 and 13.8 µF cm
-2

 were obtained at 150 µM, in the presence of CxTP and 

PhTP, respectively. The decrease of Cdl values with increasing the inhibitors concentration may be 

originated from the decrease of the local dielectric constant and/or the increase in thickness of the 

electrical double layer confirming that the organic compounds act via adsorption on C-steel surface 

[30, 33].  

The Ra values progressively increase with the concentration of the phenothiazinyl-thiazolyl-

hydrazine derivatives, while simultaneously the adsorption capacitance, Ca has generally a decreasing 

trend. It might be assumed that the adsorption of the organic inhibitors on C-steel surface hinders the 

formation of the corrosion products providing enhanced protection to metallic surface. This explains 
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why the corrosion products were significantly diminished on C-steel surface, as proved by SEM 

micrographs (Fig. 10).  

 

Table 1. Electrochemical parameters of C-steel corrosion in 1.0 M HCl solution obtained in the 

absence and in the presence of various concentrations of phenothiazinyl-thiazolyl-hydrazine 

derivatives at 20
0
 C 

 

Inhibitor CInh 

(

(µM) 

Re 

(

(Ω 

cm
2
) 

Rct 

(

(Ω 

cm
2
) 

Qdl 

(

(μF s
n-

1
cm

−2
)
 

n1 

 

 

 

Cdl 

(

(μF 

cm
−2

) 

 

Ra 

(

(Ω 

cm
2
) 

Qa 

 

(mF s
n-

1
cm

−2
) 

n2 

 

Ca 

(

(mF 

cm
−2

) 

Rp 

 

(Ω 

cm
2
) 

z 

 

(%) 

Blank 0 1.1 81.1 193.3 0.88 109.7 - - - - 81.1 - 

CxTP 

 

 

 

 

25 1.2 216.4 228.3 0.77 92.9 85.5    6.9 0.66 5.3 301.9 73.1 

50 1.9 266.4 213.6 0.72 70.1 129.0 5.2 0.68 4.3 395.4 79.5 

75 1.9 309.1 194.7 0.73 68.9 168.1 4.5 0.69 4.0 477.2 83.0 

100 2.2 342.5 140.7 0.73 45.8 236.5 2.1 0.69 1.5 579.0 86.0 

125 2.2 408.9 85.7 0.73 24.8 298.4 2.0 0.68 1.6 707.3 88.5 

150 2.7 469.7 34.9 0.76 9.5 398.0 1.5 0.62 1.1 867.5 90.7 

 

PhTP 

 

 

 

 

25 0.8 168.2 494.9 0.70 170.5 70.7    4.8  0.62 2.5 238.9 66.1 

50 0.7 194.7 255.6 0.75 94.0 105.2 2.7 0.56 1.0 299.9 73.0 

75 1.2 208.0 304.2 0.69 88.0 147.9 3.1 0.59 1.8 355.9 77.2 

100 1.3 292.5 140.5 0.78 57.1 215.4 3.2 0.51 2.3 507.9 84.0 

125 2.3 335.2 109.9 0.77 41.0 183.8 2.2 0.53 0.9 569.0 85.7 

150 3.7 390.6 33.5 0.83 13.8 392.4 9.96 0.61 23.8 783.0 89.6 

 

In the blank solution, the polarization resistance, Rp consists of the charge transfer resistance, 

while in the presence of the organic inhibitors, the sum of Rct and Ra is equivalent to Rp [28].  

The related inhibition efficiency, z was calculated using the Rp values according to the 

following equation: 

100(%)

0





p

pp

R

RR
z        (3) 

where Rp and Rp
0
 are the polarization resistances in the corrosive solution with and without 

inhibitors, respectively. 

As reported in Table 1, the increase of organic compounds concentration significantly enhances 

the Rp values, and consequently improves the inhibition efficiency, until reaching the maximum values 

of 90.7% for CxTP and 89.6% for PhTP, at their optimum concentration (150 µM). 

 

3.1.2. Influence of the immersion time 

To assess the short time-evolution of the inhibitor-metal system, EIS measurements were 

carried out at the open-circuit potential during 24 h of C-steel exposure to 1.0 M HCl in the absence 
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and in the presence of the organic inhibitors, at the optimum concentration of 150 µM. The impedance 

data were collected every 2 h at room temperature and several experimental results are presented in 

Fig. 4. The fitted curves represented by lines with crosses are shown together with the experimental 

data represented by symbols.  

 
Figure 4. Typical Nyquist diagrams for C-steel corrosion at different immersion times in 1.0 M HCl 

solution in the absence (a) and in the presence of 150 µM organic inhibitors: CxTP (b) and 

PhTP (c). Symbol (—+—) corresponds to the fitted data. The numbers in Nyquist diagrams 

refer to frequency in Hz 

 

As observed in Fig. 4 the shapes of the impedance diagrams obtained at different immersion 

time in electrolytes containing phenothiazinyl-thiazolyl-hydrazine derivatives are similar with those 

recorded after 1 hour-exposure, but the diameters of the capacitive loops increase.  

The change of the Rp values with the immersion time observed in the presence of the organic 

inhibitors confirm that their protective effectiveness on C-steel corrosion is time-dependent (Fig. 5a).  
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Figure 5. Variation of the polarisation resistance (a) and inhibition efficiency (b) during the immersion 

time in 1.0 M HCl solution 

 

Disregarding the exposure to the corrosive solution, CxTP exerts a better protective effect on 

C-steel surface as compared to PhTP. The highest Rp value was obtained in the presence of 150 µM 

CxTP after 6 h immersion in the corrosive solution, while at longer exposure, the polarization 

resistance starts decreasing, as illustrated in Fig. 5a. A rather reducing trend of the Rp values over time 

was also noticed in the presence of 150 µM PhTP.  

Although the anticorrosive properties of the investigated phenothiazinyl-thiazolyl-hydrazine 

derivatives decrease slightly over time, as observed in Fig. 5b, the z values remain rather high even 

after 24 h of exposure to 1.0 M HCl, i.e. 89.2% for CxTP and 87.1% for PhTP. 

 

3.2. Polarization measurements  

3.2.1. Influence of the inhibitor concentration 

Fig. 6 shows the cathodic and anodic polarization plots of C-steel immersed in 1.0 M HCl 

solution, in the absence and presence of different concentrations of organic inhibitors. 

It is shown in Fig. 6 that the investigated organic compounds reduce the anodic and cathodic 

current densities compared to the blank solution, while the corrosion potentials were shifted toward 

more negative values. Likewise, the addition of increasing concentrations of inhibitors suppressed to 

greater extents the cathodic hydrogen evolution than the anodic iron dissolution.  

In order to get information about the kinetics of the metal dissolution process, the related 

electrochemical parameters, i.e. corrosion potential (Ecorr), cathodic (βc) and anodic (βa) Tafel slopes, 

corrosion current density (icorr) were calculated by extrapolation of the linear part of the current-

potential curves to the corrosion potential. The obtained parameters are presented in Table 2. 

In Table 2 are also listed the values of the inhibition efficiency (z) calculated according to the 

following equation:  
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100(%)
0

corr

corr
0





i

ii
z corr        (4) 

where i
0

corr and icorr are the corrosion current density values without and with inhibitor, 

respectively.  

 

 
Figure 6. Polarization curves for C-steel immersed in 1.0 M HCl solution containing different 

concentrations of phenothiazinyl-thiazolyl-hydrazine derivatives at 20
0
C 

 

Table 2. Electrochemical corrosion parameters obtained from the polarization curves in the absence 

and in the presence of various concentrations of phenothiazinyl-thiazolyl-hydrazine derivatives 

at 20
0
 C 

 

Inhibitor cInh  

(µM) 

Ecorr 

(mV vs. SCE) 

icorr 

(µA cm
-2

) 

|βc| 

(mV dec
-1

) 

βa 

(mV dec
-1

) 

z 

(%) 

Blank 0 -475.1 160.8 103.7 92.3 - 

 

CxTP 

 

25 

 

-527.8 

 

66.6 

 

126.4 

 

113.2 

 

58.6 

 50 -534.2 36.1 124.8 107.6 77.5 

 75 -530.2 25.0 170.1 95.8 84.5 

 100 -531.7 23.7 126.5 60.3 85.3 

 125 -547.1 21.8 150.2 125.5 86.4 

 

 

150 -517.4 13.5 110.8 81.5 91.6 

PhTP 25 -505.5 74.0 123.2 89.5 54.0 

 50 -508.2 37.3 127.1 87.7 76.8 

 75 -511.1 30.8 109.9 93.2 80.9 

 100 -518.3 27.0 172.5 102.4 83.2 

 150 -510.8 19.8 146.9 107.0 87.7 

 

From Table 2, it is obvious that the addition of the phenothiazinyl-thiazolyl-hydrazine 

derivatives causes an important decrease of the corrosion current density values and the extent of 
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reduction is concentration-dependent. Disregarding the nature of the organic inhibitors, as their 

concentration increases, the corrosion current density decreases progressively and the lowest values 

were obtained at the concentration of 150 µM. Correspondingly, the inhibition efficiency values 

increase with increasing the inhibitors concentration and were in the range of 58.6 - 91.6% for CxTP 

and 54.0 - 87.7% for PhTP, respectively. These results confirm that the two phenothiazinyl-thiazolyl-

hydrazine compounds act as efficient inhibitors on C-steel corrosion in 1.0 M HCl solution, 

particularly at high concentrations. The greatest anticorrosive effectiveness was obtained in the 

presence of CxTP, in accordance with the experimental data obtained from EIS. 

Furthermore, a shift of Ecorr towards more negative values takes place in the presence of the 

organic inhibitors. Compared to the blank solution, the corrosion potential of C-steel shifts about 42-72 

mV cathodically in the presence of CxTP, while PhTP causes a negative displacement of Ecorr values 

in the range of 30-43 mV. According to the literature [34], an inhibitor could be classified as cathodic 

or anodic if the displacement of the corrosion potential is more than 85 mV with respect to the 

corrosion potential of the blank solution. The obtained results suggest that the two phenothiazinyl-

thiazolyl-hydrazine derivatives might be classified as mixed-type inhibitors of C-steel corrosion with a 

predominant cathodic effectiveness. 

Regarding the Tafel slope, it can be noticed that both anodic (βa) and cathodic (βc) kinetics are 

modified in the presence of the inhibitors. These results confirm the ability of the organic compounds 

to reduce the anodic iron dissolution and to retard the hydrogen evolution reaction, acting as mixed-

type inhibitors. This is likely due to the adsorption of the inhibitors on C-steel forming a barrier film 

that blocks the reaction sites of the metal surface [23, 35]. As expected, a higher coverage of organic 

compounds on C-steel surface was obtained in solutions containing higher concentrations of inhibitors.  

The parallel cathodic Tafel curves in Fig. 6 suggest that the hydrogen evolution is activation-

controlled and the adsorption of the phenothiazinyl-thiazolyl-hydrazine derivatives merely decreases 

the actual surface area available for the reduction of H
+
 ions, without affecting the cathodic reaction 

mechanism. 

In the anodic domain, for potentials higher than about -400 to -350 mV vs. SCE, a steep 

increase of the anodic current density could be observed on the polarisation curves obtained in the 

presence of the organic compounds. This behaviour is more evident at higher concentrations of 

inhibitors and particularly in the presence of CxTP. A similar phenomenon was noticed for the steel 

corrosion in HCl [6, 7] or H3PO4 solutions [36] in the presence of organic inhibitors. It was attributed 

either to the desorption of the absorbed inhibitor [37] or to the equilibrium between the adsorption and 

desorption of the inhibitor on the metallic surface [6].  

 

3.2.2. Influence of temperature 

The influence of temperature on the inhibited acid-metal reaction is rather complex since 

various changes might occur on the metallic surface, i.e. rapid etching and desorption of inhibitor or 

even the decomposition or rearrangement of its molecules [29, 38]. 
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To investigate the effect of the temperature and to determine the activation energies of the 

corrosion process, potentiodynamic polarization experiments were performed on C-steel surface in 1.0 

M HCl solution, in the temperature range of 25 to 55
0
C in absence and presence of the optimum 

concentration of phenothiazinyl-thiazolyl-hydrazine derivatives (150 µM). The obtained polarisation 

curves are depicted in Fig. 7.  

 

 

 
 

Figure 7. Polarisation curves for C-steel in 1.0 M HCl solution at different temperatures in the absence 

(a) and in the presence of 150 µM organic inhibitors: CxTP (b) and PhTP (c) 

 

As shown in Fig. 7, the anodic and cathodic current densities increase under the accelerating 

effect of the temperature in the blank and inhibited solutions. The rates of the metal dissolution and 

hydrogen evolution are both enhanced by the temperature raising, but to a much lower extent in 

inhibitors-containing solutions.  

Table 3 summarizes the corrosion kinetic parameters determined by Tafel extrapolation of the 

polarization curves at various temperatures.  
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Table 3. Effect of temperature on the electrochemical parameters of C-steel corrosion in 1.0 M HCl 

solution in the absence and in the presence of 150 µM phenothiazinyl-thiazolyl-hydrazine 

derivatives 
 

Inhibitor t 

(
0
C) 

Ecorr 

(mV vs. SCE) 

icorr 

(µA cm
-2

) 

|βc| 

(mV dec
-1

) 

βa 

(mV dec
-1

) 

z 

(%) 

Blank 25 -516.2 171 119.3 100.9 - 

35 -501.9 390 111.9 97.6 - 

45 -491.5 1108.2 121.5 109.1 - 

55 

 

-489.4 1309.2 120.4 102.6 - 

CxTP 25 -503.3 22.1 178.9 99.6 87.1 

 35 -505.5 64.5 212.9 91.4 83.5 

 45 -508.6 200.3 188.1 112.4 81.9 

 

 

55 -525.7 309.4 151.1 133.8 76.4 

PhTP 25 -520.3 34.0 144.3 98.5 79.9 

35 -519.8 94.0 104.8 89.2 75.9 

45 -531.4 252.2 111.9 103.5 77.2 

55 -539.5 477.4 130.9 121.8 63.5 

 

In the blank solution, the icorr values are significantly higher at elevated temperatures, while the 

Ecorr shift towards more positive values, indicating that the dissolution rate of the C-steel is greatly 

enhanced by the temperature raising. 

In the presence of the inhibitors, the corrosion current densities also increase with the 

temperature, but they are much lower compared to the icorr values obtained for the blank solution, at 

each temperature. Although the corrosion rate is accelerated at elevated temperatures, CxTP and PhTP 

still present inhibitive properties on C-steel corrosion, in the studied temperature range. These results 

are consistent with the inhibition efficiency values, which decrease slightly when the temperature 

increases, but remain quite high of about 81.9% and 77.2% at 45
0
C in the presence of CxTP and PhTP, 

respectively. A destabilisation of the adsorbed inhibitor film on the C-steel surface might takes place at 

elevated temperatures, resulting in a lower coverage [39] and, thus to a higher extent of corrosion.  

Further inspection of the data of Table 3 shows that there are no significant changes in the 

Tafel slopes of the two branches of the polarization curves corresponding to the blank solution, as the 

temperature increases. Instead, in the presence of the organic inhibitors, both the anodic and cathodic 

Tafel slopes change with the temperature and this tendency is more pronounced at elevated 

temperatures.  

The activation energy of the corrosion process, Ea could be determined by the Arrhenius 

equation: 

        (5) 

where Ea is the activation energy of the corrosion process, T is the absolute temperature, R is 

the gas constant, A is the Arrhenius pre-exponential factor and icorr is the corrosion current density. 
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In Fig. 8 showing the Arrhenius plot of ln icorr vs.  , straight lines were obtained in the absence 

and presence of the two organic compounds, with the slope of .  

 

 
 

Figure 8. Arrhenius plots for C-steel corrosion in 1.0 M HCl solution in the absence and in the 

presence of phenothiazinyl-thiazolyl-hydrazine derivatives at the concentration of 150 µM 

 

The calculated activation energy for C-steel corrosion in 1.0 M HCl is 54.2 kJ mol
-1

, while in 

the presence of CxTP and PhTP, the obtained Ea values are 74.9 kJ mol
-1

 and 73.8 kJ mol
-1

, 

respectively. The higher Ea values obtained in presence of the organic compounds should be associated 

to a physical barrier for charge and mass transfer created by the adsorbed inhibitor molecules [16, 40]. 

Considering the specific adsorption of the chloride ions on C-steel surface in the strong acidic 

electrolyte, it can be assumed that the inhibitors might be electrostatically adsorbed in their protonated 

forms at the first stage [40], as further explained in Section 3.5. The small difference in the values of 

the activation energy should be due to the differences in the molecular structure of the protonated 

phenothiazinyl-thiazolyl-hydrazine derivatives [41]. However, as explained by Zhang [40], the 

adsorption of an organic molecule could not be considered only as a physical or chemical adsorption 

phenomenon, since a wide spectrum of conditions, ranging from the dominance of chemisorption or 

electrostatic effects arises from the other adsorption experimental data. 

 

3.3. Adsorption isotherm  

More information on the interaction mechanism between the organic inhibitors and metallic 

surface could be provided by the adsorption isotherm. For this purpose, a direct relationship between 

inhibition efficiency (z) and the surface coverage degree (θ = z/100) was assumed for different 

concentrations of inhibitors.  

Among different adsorption isotherms, the Langmuir isotherm is widely used for explaining the 

adsorptive mechanism of the inhibitors on the metallic surfaces and therefore, it was tested firstly. 
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According to Langmuir isotherm, the fractional surface coverage, θ is related to the inhibitor 

concentration, cInh via the following relation: 

Inh
Inh c

K

c


1


        (6) 

where K is the adsorption equilibrium constant.  

 

 
 

Figure 9. Langmuir adsorption isotherm of the phenothiazinyl-thiazolyl-hydrazine derivatives on C-

steel surface in 1.0 M HCl solution, at 20
0
 C 

 

The values of adsorption equilibrium constant,  were calculated from the interception of the 

straight lines in Fig. 9 and the obtained values are given in Table 4.  

The standard free energy of adsorption  was calculated from the adsorption equilibrium 

constant,  according to the following equation: 

       (7) 

where 55.5 represents the molar concentration of water in solution (mol dm
-3

), R is the gas 

constant and T is the thermodynamic temperature.  

The calculated  values corresponding to the adsorption of the organic compounds on C-

steel in 1.0 M HCl are also depicted in Table 4.  

 

Table 4. Thermodynamic parameters for the adsorption of phenothiazinyl-thiazolyl-hydrazine 

derivatives on C-steel in 1M HCl solution at 20
0
 C 

 

Inhibitor Slope        K
 

(dm
3
 mol

-1
) 

-
0

ads
G  

(kJ mol
-1

) 

CxTP 1.08 100.90·10
3  

37.84 

PhTP 1.02 63.69·10
3
 36.71 
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It is known that values of  around - 20 kJ mol
-1

 or less negative are associated with the 

electrostatic interactions between the charged molecules and charged metal surface (physisorption), 

while those more negative than - 40 kJ mol
-1

 involve sharing or transfer of electrons from the inhibitor 

molecules to the metal surface to form coordinate type of bonds (chemisorption).  

In the present study, the calculated  values suggest that the adsorption of the 

phenothiazinyl-thiazolyl-hydrazine derivatives on C-steel in 1.0 M HCl is a combination of 

physisorption and chemisorption [13, 42].  

The absolute values of  slightly decrease in the order CxTP > PhTP, in agreement with 

the range of the inhibition efficiency values obtained from the electrochemical measurements. 

A comparison of the inhibitive performance and adsorption mechanism of the studied 

phenothiazinyl-thiazolyl-hydrazine derivatives with several organic molecules previously described in 

the literature as efficient inhibitors for C-steel corrosion in 1.0 M HCl solution is given in Table 5. 

 

Table 5. The adsorption mechanism and inhibition efficiency values obtained for several organic 

inhibitors previously reported as corrosion inhibitors for C-steel in 1.0 M HCl solution 

 

Inhibitor Optimum 

Concentration 

Highest 

inhibition 

efficiency 

(%) 

Adsorption 

mechanism 

Reference 

2,5-Bis(4-dimethylaminophenyl)-

1,3,4-oxadiazole 

1 mM 93% Chemisorption 

 

[1] 

N,N-pentane-2,4-diylidenedipyridin-

4-amine  

 

 

 

 

 

400 ppm 

88.0 Chemisorption 

and 

Physisorption 

[13] 

 

 N,N-(3-Benzylidenepentane -2,4-

diylidene)dipyridin-4-amine  

 

91.6 

 

N,N-[3-(4-

methoxybenzylidene)pentane-2,4-

diylidene] dipyridin-4-amine 

 

90.0 

 

N,N-[3-(4-

chlorobenzylidene)pentane-

2,4diylidene] dipyridin-4-amine 

 

83.9 

N,N‘-[2,2‘-

thiocarbonylbis(hydrazine-2,1-

diyl)bis(thioxomethylene)] 

dibenzamide  

 

 

 

0.2 mM 

96.9 % Chemisorption 

 

[18] 

 

N,N‘-[2,2‘-

thiocarbonylbis(hydrazine-2,1-

diyl)bis(thioxomethylene)]bis(4-

methoxy benzamide)  

  

98.2% 

 

3,5-bis(2-thienylmethyl)-4-amino-

1,2,4-triazole 

0.1 mM 92.2 Chemisorption [28] 
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2-(n-hexylamino)-4-(3‘-N,N-

dimethylamino-propyl)amino-6-

(benzothiazol-2-yl)thio-1,3,5-s-

triazine   

 

2-(n-octylamino)-4-(3‘-N,N-

simethylaminopropyl) amino-6-

(benzothiazol-2-yl)thio-1,3,5-s-

triazine 

 

 

 

 

1 mM 

99.0 Chemisorption 

and 

Physisorption 

[35] 

 

 

 

 

99.3 

2,5-bis(2-thienyl)-1,3,4-thiadiazole  

0.15 mM 

93.70 Chemisorption [38] 

 

2,5-bis(3-thienyl)-1,3,4-thiadiazole 

 

 

97.19 

E)-ethyl 2-(2-((10-ethyl-10H-

phenothiazin-3-yl)methylene) 

hydrazinyl)thiazole-4-carboxylate  

 

 

0.15 mM 

 

91.6 Chemisorption 

and 

Physisorption 

Present 

work 

 

(E)-10-ethyl-3-((2-(4-phenyl thiazol-

2-yl)hydrazono)methyl)-10H-

phenothiazine 

 

87.7 

 

The data in Table 5 shows that the studied phenothiazinyl-thiazolyl-hydrazine derivatives 

present similar adsorption mechanism and inhibitive performances with those previously reported for 

different organic compounds possessing several anchoring sites suitable for surface bonding, i.e. 

certain diquaternary Schiff dibases in the same experimental conditions.   

 

3.4. SEM-EDX investigations 

The surface morphology of C-steel specimens after 6 h immersion in 1.0 M HCl solution, in the 

absence and in the presence of 150 µM phenothiazinyl-thiazolyl-hydrazine derivatives was 

investigated by SEM.  

 

 

    

(a) 

(a’) 



Int. J. Electrochem. Sci., Vol. 13, 2018 

  

8356 

    

…  

    

 

Figure 10. SEM micrographs and EDX spectra of C-steel before  a, a‘  and after 6 h of immersion in 

1.0 M HCl solution in the absence  b, b‘  and in the presence of 15  µM organic inhibitors: 

CxTP  c, c‘  and PhTP  d, d‘   

 

Fig. 10a shows the polished surface of C-steel before exposure to the aggressive solution; it 

reveals some dark spots, already known as non-metallic inclusions and scratches due to the polishing. 

After 6 h exposure to 1.0 M HCl, C-steel surface appears to be highly corroded due to the aggressive 

attack of the acid solution (Fig. 10b).  

In contrast, in the presence of the organic compounds, the degree of corrosion is markedly 

reduced and a smoother and less damaged morphology of C-steel surface could be seen in Figs. 10c 

and 10d. This observation clearly verifies that both, CxTP and PhTP present inhibiting properties on 

the C-steel corrosion. The organic compounds form a protective adsorbed film on the metallic surface, 

hindering C-steel dissolution in 1.0 M HCl. However, some corrosion products are still present on the 

C-steel surface, especially in the presence of PhTP, which has a lower inhibition effectiveness. These 

(b)

) 

(c) 

(b’) 

(c’) 

(d) 

(d’) 
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active corrosion zones visible on the C-steel surface in the presence of the organic inhibitors might 

appear due to the protective film deterioration during the immersion time.  

EDX spectra was used to identify the elements present on C-steel surface before and after 6 h 

exposure to 1.0 M HCl solution, in the absence and in the presence of the organic inhibitors. The 

obtained results are displayed in Fig. 10. As expected, the formation of iron oxides as corrosion 

products on the C-steel surface after 6 h immersion in 1.0 M HCl is demonstrated by the appearance of 

the large O peak on the EDX spectrum. An additional signal for the existence of Cl element on the 

surface could be also notice in Fig  1 b‘   

In the inhibited solutions, the O signal is significantly reduced; the weight percent of O 

decreases from 36.81% in the blank solution to 6.32% and 16.19% in the presence of CxTP and PhTP, 

respectively. The highest reduction of the O content noticed in the presence of CxTP  Fig  1 c‘  

endorse its greater inhibiting efficiency over PhTP  Fig  1 d‘ , in accordance with the results of the 

electrochemical measurements. 

 

3.5. Quantum chemical calculations 

Quantum chemical calculations were carried out to understand the nature of the interactions 

between the organic molecules and C-steel surface. 

The frontier molecular orbital distributions for the phenothiazinyl-thiazolyl-hydrazine 

derivatives determined by hybrid DFT functional (B3LYP/6-31G*) basis set are shown in Table 6. The 

generated lowest energy conformers were further used to calculate the quantum molecular parameters, 

such as EHOMO, ELUMO, energy gap, ΔE (ELUMO −EHOMO), which are also listed in Table 6. 

The attempts to correlate the quantum chemical parameters with the experimental inhibition 

efficiencies indicate that no relationship could be derived from the inhibition performance of the 

studied organic inhibitors. The expectation was that amongst the two derivatives, the molecule having 

the highest EHOMO and the lowest ELUMO and ΔE values would provide the best inhibitive properties, 

but the results attest the contrary [18]. This inconsistency between the quantum chemical parameters 

and the experimental z data provides a confirmation of the complex nature of interactions that are 

involved in the corrosion inhibition process [43], including the competing effects, i.e. interactions 

inhibitor molecule-water, inhibitor molecule-metal, metal-water and water-water [18], as well as the 

protonation reactions.  

It is known that the protonation usually occurs in acidic solution containing inhibitors with 

heteroatoms having lone pair of electrons and the protonated species have been reported to take part in 

the adsorption process on the metallic surface [44].  

The molecular structure of the investigated phenothiazinyl-thiazolyl-hydrazine derivatives is 

complex (Fig. 1) and present several sites for protonation, i.e. S atom from the phenothiazine group, N 

and S atoms from the thiazole moiety, N atoms from the hidrazinyl bridge and O atom in the ester 

moiety.  
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Table 6. Theoretical quantum chemical parameters of the phenothiazinyl-thiazolyl-hydrazine 

derivatives and the typical HOMO and LUMO densities distribution 

 

Molecule 
E 

(kcal/mol) 

EHOMO  

(eV) 

ELUMO  

(eV) 

∆E  

(eV) 
HOMO  LUMO  

CxTP -1241270.03 -5.15 -1.48 3.69 

  

PhTP -1218594.76 -5.07 -1.39 3.68 

  

 

In an attempt to identify the most favourable sites for the protonation of the organic compounds 

in HCl, the Mulliken, electrostatic and natural atomic charges were calculated and their values are 

presented in Table 7. The electrostatic potential surfaces corresponding to CxTP and PhTP are also 

shown in Table 7.  

 

Table 7. Calculated Mulliken, electrostatic and natural atomic charges and the electrostatic potential 

surfaces for CxTP and PhTP molecules 

 

Heteroatom Charges (e) Electrostatic potential  

surfaces* 

Electrostatic Mulliken Natural  

CxTP 

 
 

 

N1   Phenothiazine -0.406 -0.594 -0.426 

S1   Phenothiazine -0.116 0.183 0.355 

N2   C=N -0.285 -0.220 -0.262 

N3   -N-H -0.129 -0.483 -0.440 

N4   thiazole -0.560 -0.500 -0.491 

S2    thiazole 0.012 0.270 0.426 

O1   -OEt -0.297 -0.457 -0.540 

O2   C=O -0.528 -0.505 -0.607 

PhTP 

 

N1 Phenothiazine -0.386 -0.594 -0.426 

S1 Phenothiazine -0.118 0.181 0.354 

N2   C=N -0.271 -0.217 -0.259 

N3   -N-H -0.142 -0.482 -0.439 

N4   thiazole -0.533 -0.529 -0.520 

S2    thiazole -0.011 0.255 0.416 

*By convention, the red colour from the electrostatic potential surfaces represents the negative 

potentials, blue colour represents the positive potentials, while orange, yellow and green colours depict 

intermediate values of the potential. 
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The atomic charges values listed in Table 7 show that N and O atoms possess negative charges, 

whereas S atom bears preponderantly positive charges. According to the electrostatic potential values, 

the electron rich regions which are subject to the electrophiles attack in HCl solution are N4 (-203.0 kJ 

mol
-1

), O2 (-176.2 kJ mol
-1

), N2 (-126.3 kJ mol
-1

) for CxTP and N2 (-137.8 kJ mol
-1

) and N4 (-139.3 

kJ mol
-1

) for PhTP, respectively. Based on these results, the possible protonation reactions of the 

investigated phenothiazinyl-thiazolyl-hydrazine derivatives occurring in HCl are presented in Scheme 

1.  

 

 
Scheme 1. The possible protonation reaction of the phenothiazinyl-thiazolyl-hydrazine derivatives in 

acidic solution 

 

Since all protonated species of CxTP and PhTP would coexist in HCl solution and might 

interact with C-steel surface, it was interesting to investigate the influence of the protonation on their 

molecular structures and properties. The quantum chemical parameter calculated for the protonated 

forms of the phenothiazinyl-thiazolyl-hydrazine derivatives and their electron density distribution in 

HOMO and LUMO frontier molecular orbitals are presented in Table 8. 

Comparing the total energy values, E calculated for all protonated forms of the two organic 

compounds, i.e. the cations I, II, III generated from CxTP and I’, II’ generated from PhTP (Scheme 

1), it could be observed that the cationic species CxTP
+
(II) and PhTP

+
(II’) present the lowest E values 

(Table 8), which means that they are the most stable ones. The energy gap values between the 

protonated forms (EII–EI, EII–EIII and EII‘–EI‘) also confirm their presence in acidic solution, probable 

with an excess of CxTP
+
(II) compared to the other cationic forms of CxTP. The same observation 

could be made for PhTP, where the PhTP
+
(II’) cation might prevail in the acidic solution over the 

PhTP
+
(I’). 
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Table 8. Theoretical quantum chemical parameters of the protonated phenothiazinyl-thiazolyl-

hydrazine derivatives and the typical HOMO and LUMO densities distribution 

 

Molecule 
E 

(kcal/mol) 

EHOMO  

(eV) 

ELUMO  

(ev) 

∆E  

(eV) 
HOMO LUMO 

CxTP
+
(I)

 -1241530.91 -8.34 -5.94 2.40 

  

CxTP
+
(II) -1241534.75 -7.50 -5.04 2.46 

  

CxTP
+
(III) -1241515.75 -6.99 -6.07 0.92 

  

PhTP
+
(I’) -1218858.54 -8.06 -5.87 2.19 

 
  

PhTP
+
(II’) -1218861.71 -7.40 -4.80 2.60 

  

 

The higher tendency of the nitrogen N4 from CxTP to be involved in the protonation correlated 

with the lower energy of the corresponding CxTP
+
(II) cation generated in this process confirmed the 

experimental results, which showed that CxTP exerts better inhibition properties compared to PhTP.  

The EHOMO and ELUMO values of the protonated forms of CxTP and PhTP are lower compared to 

the corresponding values of the neutral inhibitors, which is also compatible with the experimental 

results. Moreover, the protonated molecules present smaller ΔE values compared to the neutral 

compounds, confirming that the inhibiting behaviour of the phenothiazinyl-thiazolyl-hydrazine 

derivatives in HCl is due to the adsorption of their protonated forms on C-steel surface.  

Although all protonated forms of the phenothiazinyl-thiazolyl-hydrazine derivatives from 

Scheme 1 might interact with the C-steel surface during the inhibition process, for simplicity reasons, 

we will further limit our discussion to the most stable cations. As for example, the expected 

interactions between CxTP
+
(II) protonated molecule and C-steel surface are illustrated in Fig. 11. 
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Figure 11. The possible interactions between CxTP
+
(II) protonated inhibitor and iron surface 

 

As shown in Fig. 11, the electrostatic potential surface (blue region) and the LUMO orbital 

indicate that the thiazole moiety from CxTP
+
(II) bears positive charges and is mainly responsible for 

the electrostatic interactions. In the same time, the S atom and the aromatic rings from the 

phenothiazine core can be involved in electron transfer to the vacant d orbitals of Fe atoms, as 

suggested by the electrostatic potential surfaces (red region) and HOMO orbital of CxTP
+
(II). Similar 

interactions could be assumed for PhTP
+
(II’) protonated molecule and C-steel surface in 1.0 M 

hydrochloric solution. 

 

3.6. Mechanism of corrosion inhibition 

Generally, the corrosion inhibition mechanism in acidic solution is based on the adsorption of 

the inhibitor molecules on the metallic surface. Several factors affect the adsorption process, including 

the chemical structures of the inhibitors, the nature and charged surface of the metal, the aggressive 

electrolyte type, and the distribution of the charge over the whole inhibitor molecule [13]. 

As proved by DFT calculations, the investigated phenothiazinyl-thiazolyl-hydrazine derivatives 

exist in different protonated forms in HCl solution, which present several centres of adsorption on C-

steel surface. Due to the complex nature of the interactions between the protonated inhibitors and Fe, it 

is impossible to advise a single adsorption mode of the phenothiazinyl-thiazolyl-hydrazine derivatives 

on C-steel surface [13]. Based on the obtained results, the following mechanisms were proposed to 

explain the corrosion inhibiting mechanism of studied organic inhibitors on C-steel in 1.0 M HCl 

solution.  

The surface charge of the metal can be determined from the value of  (zero charge 

potential). In the case of Fe, the reported value of Eq=0 values is -530 mV vs. SCE in 1.0 M HCl [45]. 

In our study, the obtained value of Ecorr is -475.1 mV vs. SCE. Hence, the C-steel surface bears positive 

charge in 1.0 M HCl, since the calculated value of  is +54.9 mV vs. SCE. 
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As the organic compounds exist in protonated forms in HCl, it is difficult to approach the 

positively charged C-steel surface due to the electrostatic repulsion [13]. Thus, it was assumed that the 

Cl
– 

anions could be first physically adsorbed on C-steel surface bringing an excess of negative charge 

near the interface [13, 42], which further favour the adsorption of the protonated molecules through 

electrostatic interactions on the cathodic sites of C-steel (Fig. 11). In other words, there may be a 

synergism between Cl
- 
and protonated inhibitors [46]. The physisorption of the protonated inhibitors 

on the negatively charged C-steel surface may compete with hydrogen ions reducing the rate of the 

cathodic reaction, without changing the hydrogen evolution mechanism.  

In addition to physical adsorption, the protonated inhibitors may be adsorbed on C-steel via the 

chemisorption mechanism [47] involving the displacement of the water molecules from the metallic 

surface and donor-acceptor interactions of the free electron pairs of S atom and/or of the -electrons of 

aromatic rings from the phenothiazine core and the vacant d-orbital of surface Fe atoms (Fig. 11). The 

unprotonated N atoms from the thiazole moiety and hidrazinyl bridge may also be involved in donor-

acceptor interactions with the vacant d-orbital of Fe atoms. Finally, an adsorbed inhibitor film is 

formed on C-steel surface, acting as a barrier between the metal and corrosive solution and thus, 

reducing the dissolution rate.  

These assumptions agree with the experimental results which revealed that the phenothiazinyl-

thiazolyl-hydrazine derivatives are mixed-type inhibitors, acting by adsorption on C-steel surface 

involving two types of interaction, i.e. physisorption and chemisorption.  

  

  

 

4. CONCLUSIONS 

The following main conclusions can be drawn from the present study:  

1. Phenothiazinyl-thiazolyl-hydrazine derivatives acts as efficient inhibitors for C-steel 

corrosion in 1.0 M HCl; their inhibition efficiencies increase with the inhibitors concentration, but 

slightly decrease at elevated temperatures and after 24 h of exposure to aggressive solution.  

2. Potentiodynamic polarization indicates that the phenothiazinyl-thiazolyl-hydrazine 

derivatives behave as mixed-type inhibitors, with a predominant cathodic effectiveness. The maximum 

inhibition efficiencies of 91.6% for CxTP and 87.7% for PhTP were obtained at 150 µM concentration.
 

3. In EIS spectra, the inhibiting effect of the phenothiazinyl-thiazolyl-hydrazine derivatives 

results in an important increase of the impedance in the whole frequency domain. In the presence of 

the organic compounds, the processes taking place at C-steel interface are well described by a model 

containing two-time constants – one connected to the charge transfer and double-layer capacitance and 

the other to the inhibitor adsorption process. 

4. The adsorption of organic molecules on C-steel surface obeys Langmuir adsorption 

isotherm. The calculated 
0

ads
G values suggest that the adsorption process is spontaneous and involves 

both, physisorption and chemisorption modes. 

5. SEM-EDX clearly verifies that the studied phenothiazinyl-thiazolyl-hydrazine derivatives 

significantly retard the C-steel dissolution process. 
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6. DFT calculations support the idea that the protonated forms of the phenothiazinyl-thiazolyl-

hydrazine derivatives are involved in the inhibition mechanism.  
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