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Tin oxide (SnO2) is a promising alternative material to replace graphite as an anode material for 

lithium ion battery (LIB). However, bulky neat SnO2 still suffers from serious pulverization and rapid 

decay of capacity during charging and discharging. In this study, to enhance the cyclic stability and 

rate performance of SnO2–based anode, antimony tin oxide (ATO)-containing nanofibers were 

synthesized by a two-step process in this work, including electrospinning of SnCl2/SbCl3/PVP and 

calcination at 400°C-600°C in air. The electrospun fibers developed from solid to hollow structures 

through a Kirkendall diffusion process. All ATO nanofibers treated at different temperatures showed 

an extraordinary initial capacities, in the range of 1563 mAhg
-1

-1711mAhg
-1

 during the first discharge. 

Moreover, the fibers calcinated at 400 °C exhibited excellent cyclic stability, namely the capacity at 

the 200
th

 cycle was 730 mAhg
-1

 at a current density of 0.2Ag
-1

, which was 76% of its capacity at the 

2
nd

 cycle. In addition, this material also displayed excellent rate performance, delivering 327 mAhg
-1

 at 

3.2Ag
-1

 after 60 cycles. These values were superior to those calcinated at 600°C, Because of its 

reduced volume, the carbon matrix provides a large surface area and a short diffusion length in the 

treated ATO fibers. provided by the carbon matrix in the 400°C-treated ATO fibers. These results 

revealed the importance of combining the buffering carbon phase with the nano-fibrous structure for 

the improvement of SnO2-based electrode, and would pave the way for further enhancing the 

performance of anodes for LIBs.  
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1. INTRODUCTION 

Graphite has been used as an anode in major lithium-ion batteries (LIBs) for the past few 

decades . but it could not meet the future demands on even higher performance. Hence tremendous 
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efforts have been devoted to developing alternative current anode materials with higher storage 

capacity and longer life  to replace the current anode material [1, 2].   

Among the numerous novel candidates for such purpose, tin-based materials (Sn and/or SnO2 

and their composites) have attracted particular attention due to their high theoretical capacity (790 

mAhg
-1

 for SnO2 and 990 mAhg
-1

 for Sn), safe working potential and low toxicity [3, 4]. 

 However, Sn and SnO2 both suffer from severe volume change and pulverization which leads 

to rapid capacity loss, an issue exists also for other electrode material based on a single metal (or metal 

oxide). Two general methods have been proposed to alleviate the volume change and enhance the 

cyclic stability of tin-based material in literatures, namely the downsizing of crystalline particles and 

incorporation of active materials into a buffer matrix [5-7]. Anode based on various nanostructures of 

Sn such as SnSb alloy particles, graphene/SnO2 nanocomposites, Sn/SnO2@C nanofibers and ternary 

alloy of Sn-Ni-Cu-alloy@carbon nanorods have been reported [5, 8-10]. However, a capacity below 

700 mAhg
-1

 after 100 cycles is typically obtained and further improvement of the cyclic stability is 

desired for practical applications.[11] 

Recent studies have shown that the combination of Sn nanoparticles with the nanostructure of 

one-dimensional buffer substrates, such as carbon fiber, is of great benefit to the mechanical stability 

of the morphology, and provides rapid transport of electrons and lithium ion pathways and large active 

sites for lithium storage [6]. Our previous studies also showed that the electrochemical performance of 

conventional (i.e. nanoparticles) electrode materials can be enhanced remarkably by creating nano-

fibrous structure [10-14]. Furthermore, it has also been demonstrated that excellent cyclic stability can 

be achieved by alloying Sn with another metal which can independently store high amounts of lithium, 

due to that only one elements reacts with lithium at a time and the other acts as a buffer during that 

time period. However, nanofibers comprised of these binary metal oxides fabricated through a facile 

electrospinning method has not been reported yet. 

In this study, ATO-containing nanofibers were synthesized by first electrospinning of a blended 

solution of SnCl2, SbCl3 and polyvinylpyrrolidone (PVP), which were then annealed in air. The 

electrospun nanofibers developed from solid to hollow structures when the temperature was increased 

from 400°C to 600°C due to Kirkendall diffusion effect. The performance of the ATO nanostructures 

as an anode for LIBs was investigated. The results show that, in calcining, the remaining carbon 

provides a large surface area and can buffer the change of volume during the charge-discharge process, 

so the cyclic stability and rate performance of the fiber are in the best condition. 

 

 

2. EXPERIMENTAL 

2.1 Synthesis of ATO-based anode materials 

The ATO-containing nanofibers were prepared by electrospinning of precursor solution 

followed by a calcination process (Figure 1). PVP was dissolved in dimethamide (DMF) at room 

temperature to prepare the polymer solution with a concentration of 13%. The molar ratio of 

SnCl2·2H2O (analysis level) and SbCl3 (analysis level) salt was 1:1, which was mixed and dissolved 

in ethanol for 8 hours to prepare the solution with a total salt concentration of 12.%. A stable 

electrostatic spinning solution was obtained by mixing salt solution with PVP solution at a weight ratio 
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of 1:1 and stirring for 12 hours. The prepared solution was loaded into a plastic syringe, and the 

electrostatic spinning was performed with the flow rate of 1ml h-1, the distance from the needle to the 

collector was 12cm, and the voltage was 13v. Electrostatic spinning of nanofibers deposited on the 

oxidation of aluminum foil, and in 80 ° c in the oven drying 3 hours. Then, in the calcination and 600 ° 

c temperature range between the fibers in the air is heated. At 400° C ,500 ° C and 600 ° C to handle 

samples respectively called ATO - 400 , ATO-500,and ATO-600. 

 

 
 

Figure 1. The preparation procedure of ATO-containing nanofibers. 

 

2.2 Physical characterizations 

The microcrystalline structure of the fiber was determined by Brook optics D8 advanced X-ray 

diffraction (XRD, λ= 1.54, CuKa radiation). Scanning electron microscopy (SEM) (Hitachi, S-3400N) 

and high resolution transmission electron microscopy (HRTEM) (Tecnai G2 F30) were used to study 

the morphology and structure of the composite. The chemical valence of surface components was 

analyzed by X ray photoelectron spectroscopy (XPS) system (ESCALAB 250Xi). The data are 

calibrated, and the fixed value of C1s peak is 284.7 eV. Thermogravimetric analysis (TGA, 

STA409PC) (TGA, STA409PC) measurement was performed from room temperature to 1000°C under 

a controlled heating rate of 10°C min
-1

 in air. 

 

2.3 Electrochemical characterizations 

A kind of slurry was prepared, which was composed of 85wt% active material, 5wt%  

acetylene black and 10wt%carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR). The 

electrodes were prepared by pressing them on copper foil and drying them at 120°C under vacuum for 

10 hours.  The active material is loaded on the copper foil with 1.2mg/cm
-2

.  

Then, metal lithium foil was used as a counter electrode assembly, 1M LiPF6 dimethyl 

carbonate (DMC) (1:1 v/v) was used as an electrolyte, celegard 2400 was used as a separating agent, 

and a nanoparticle/copper foil was synthesized as an anode. Cycle performance and rate capabilities 

were evaluated using a CT2001A battery tester from 0.01 to 2.0 V (vs Li/Li
+
). Cyclic voltammetry 

(CV) from 0.01 to 2.0 V (vs. Li/Li
+
.) at 0.1mV/s and electrochemical impedance spectroscopy (EIS) in 
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the frequency range 10
-2

 to 10
5 
Hz and with an amplitude of 5 mV using electrochemical Workstation 

(CHI660A).  

 

 

3. RESULTS AND DISCUSSION 

The crystallite structure of nanofibers derived from pyrolysis of SnCl2/SbCl3/PVP composite 

was first characterized using XRD and the results are shown in Figure 2a. Reflections at 26.6°, 33.9°, 

38.0°, 51.8°, 54.8°, 61.9°, 64.8° and 66.0° were observed for all calcinated nanofibers, which 

correspond to (110), (101), (200), (211), (220), (310), (112) and (301) planes of tetragonal tin 

antimony oxide (JCPDS no. 88-2348) and indicates the successful conversion of SnCl2 and SbCl3 into 

binary oxides of ATO with high crystallinity upon the heat treatment. In addition, the diffraction peaks 

become narrower as the temperature increases, suggesting the increase of the ATO crystallite size. For 

both anode and cathode of Li-ion batteries, carbon influences the electrochemical performances 

significantly and thus the carbon contents in the ATO samples were first determined using TGA.  

 

 
 

Figure 2. Structural characterizations: (a) XRD patterns, (b) TGA curves, (c) Raman spectra and (d) 

XPS spectra of ATO-400, ATO-500 and ATO-600 nanofibers. 

 

The measurements (Figure 2b) suggest that there is still 18% of carbon remaining in ATO-400, 

which is due to incomplete degradation of PVP at this temperature (Figure S1 in the supporting 

information shows the TGA curve for PVP). The weight loss at 700°C, i.e. the content of carbon is 7% 
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for ATO-500 and only 2% for ATO-600. The existence of carbon residue was further confirmed by 

Raman spectroscopy (Figure 2c). Strong D and G bands characteristic to sp
2
 hybridized carbon were 

seen from ATO-400, which became remarkably weaker in ATO-500 and were inappreciable in ATO-

600, which further suggests the lower content of carbon in the latter two samples. Nevertheless, no 

diffraction from carbon crystallites was observed from the three samples. It is thus concluded that 

ATO nanofibers are composites consisting of amorphous carbon and ATO, although the carbon 

content in ATO-600 is negligible.    

The surface composition and chemical state of the nanofibers were examined by XPS. The full 

spectrum is shown in Figure 2d. The range of binding energy peaks is 284.7 eV and 288.4 eV 

corresponds to carbon, the peak is located at 487.1 and 495.4 eV from Sn 3d5/2 and Sn 3d3/2, two 

peaks at binding energies of 530.8 and 540.4 eV are attributed to Sb 3d5/2 and Sb 3d3/2, and the peak 

at 531 eV can be assigned to O element (deconvolved peaks are shown in Figure S2) [12-14]. The 

intensity of carbon peak decreases progressively with the increase of calcination temperature, and it is 

still noticeable in ATO-500 and ATO-600. Understandably, XPS technology can only detect a few 

nanometer depths of a carbon-rich surface.  

 

 
 

Figure 3. SEM images at different magnifications : (a) and (b) ATO-400, (c) and (d) ATO-500, and 

(e) and (f) ATO-600. 

 

The morphology of the nanofibers was investigated using SEM. It can be seen from Figure 3 

that the fibers develop from solid to hollow structures with the surface becomes more rough when the 

temperature increases from 400°C to 500°C. As the temperatures further increases to 600°C, the 

tubular structure retains but the wall becomes thinner and fragmentation is more frequently observed. 

Meanwhile, the diameter increased from 160 nm for ATO-400 to 200 nm for ATO-500 and further to 

250 nm ATO-600. This increase might be due to that as the carbon component vanishes at a higher 

temperature, the contact between the ATO particles become more loose which gives rise to a larger 

diameter. In addition, the SEM element map image (Figure S3) shows the uniform distribution of Sn, 
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Sb and O elements in the three samples. It was also noted that the molar ratio of Sn and Sb in all the 

calcinated nanofibers are similar to 1:1, which is close to the ratio between these two elements in the 

starting material. 

The microstructure of the nanofibers was further investigated using HRTEM. The evolution 

from solid to hollow structures from 400°C to 600°C, as shown in Figures 4a-4c, agrees well with the 

SEM observation. It can be seen that isolated ATO nanoparticles are embedded in an amorphous 

carbon matrix in ATO-400, whereas ATO-500 and ATO-600 contain significantly less carbon and the 

rigid ATO becomes the continuous phase. Closer inspection clearly reveal lattice fringes with a 

separation of 0.34 nm and 0.26 nm in ATO-500 (Figures 4d and 4e), which correspond to the (110) 

and (101) plane of ATO crystallites, respectively. The selected area electron diffraction (SAED) 

pattern confirms the formation of highly crystalline ATO (Figure 4f). 

 

 
 

Figure 4. TEM images of the ATO nanofibers: (a) ATO-400, (b) ATO-500 and (c) ATO-600; (d) 

another ATO-500 fiber, (e) enlarged image and (f) SAED pattern for the highlighted area in 

(d). 

 

A possible mechanism for the development of the morphology and structure for the nanofibers 

is proposed (Figure 5). During the heat treatment, since the temperature reaches 280 °C, SnCl2 and 

SbCl3 start to decompose near the surface of the fiber, and are easily oxidized to form SnO2 and Sb2O3 

particles, while the inner salt is deficient in oxygen. Thus, bidirectional concentration gradients, ie salt 

gradients and metal oxide gradients, form nanofibers in cross-section, leading to the "Kirkendall 

effect" and driving the diffusion of SnCl2 and SbCl3 from the core to the surface and SnO2, Sb2O3 

particles from the surface to the nanofibers Core. [1, 15-18]. The SnCl2 (Tm~37.7°C) and SbCl3 

(Tm~73.4°C) melt diffuse much faster than the SnO2 (Tm~1630°C) and Sb2O3 (Tm~656°C) particles. 

During this process, the metal salts were completely oxidized, and the PVP decomposed at the same 

time [15, 16]. Similarly, when the PVP decomposed to form CO2, due to the lack of oxygen in the core 

of the nanofibers, bidirectional concentration gradients formed for PVP and O2. Therefore, the PVP 

diffused from the core to the surface and O2 from the surface to the core of the nanofibers, which gives 
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rise to a porous structure for the nanofibers and is particularly pronounced for ATO-400. The 

continuous consumption of carbon in the core region eventually led to a hollow structure and as the 

carbon vanishes as well as the ATO crystallites grows, the fibers become more fragile.  

 

 
Figure 5. Proposed mechanism for the development of the structure of ATO nanofibers. 

 

 
 

Figure 6. N2 adsorption-desorption isotherms and pore size distribution of the ATO nanofibers. 

 

Changes in surface area and pore size as measured by nitrogen adsorption/desorption methods 

also reflect the evolution of amorphous and microstructure. Figure 6 shows the nitrogen adsorption and 

desorption isotherms of ATO nanofibers and the corresponding Barrett-Joyna-Halenda (BJH) pore size 

distribution. The Brunauer-Emmet-Teller (BET) surface area decreased from 81.6 m
2
 g

-1
 for ATO-400 

to 34.2 m
2
 g

-1
 for ATO-500 and 23.2 m

2
 g

-1
 for ATO-600, whereas the average pore size increased 

from 2.52 nm to 4.42 nm and 10.89 nm, respectively. In addition, the fraction of pores larger than 50 

nm in the latter two samples is obviously higher than in ATO-400. The higher surface area of ATO-

400 than the other two samples can be understood that the amorphous carbon possesses a lower density 

and higher porosity than the crystalline ATO. As the temperature increases, the micropores collapse 

which give rises to larger pores. The inter-particle connection also becomes looser when the 

crystallites grow larger. 
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The electrochemical performances of the ATO nanofibers as anodes in LIB were first 

investigated using CV and the curves for ATO-400 are shown in Figures 7a. In the first cathode scan, a 

broad reduction peak of about 1.2 V and 0.5 V was observed, which disappeared in the following 

cycles. These peaks correspond to the formation of the solid electrolyte interphase (SEI) layer on the 

electrode surface and reduction of ATO by lithium to form metallic Sn, Sb and amorphous Li2O [19]. 

In addition, a strong reduction peak was observed at 0.75 V, The reason for this is that Li3Sb is formed 

by the reaction of Sb with Li+ .The multi-step alloying reaction between Sn and Li, which leads to the 

formation of LixSn, is shown by a broad peak around 0.4V. There is no significant difference between 

the three samples in terms of the redox profiles as the amorphous carbon in ATO-400 is not involved 

in the lithiation/delithiation process (Figure S4 shows CVs of ATO-500 and ATO-600). During the 

anodic scan, the oxidation peaks in the range 0.6-0.8 V in the first anodic cycle are due to dealloying 

reaction of LixSn, The oxidative peak at 1.1 V is due to the Li-Sb dealloying reaction [20, 21]. The 

interactions between Li
+
, ATO, Sn and Sb can be described by the following reactions: 

 

(Sn
4+

Sb
3+

)O3.5 + 7Li
+
 + 7e

-
 → Sn + Sb + 3.5Li2O             (1) 

Sb + 3Li
+
 + 3e

-
 ↔ Li3Sb                                     (2) 

Sn + 4.4Li
+
 + 4.4e

-
 ↔ Li4.4Sn                                      (3). 

 

The independent lithiation processes of Sn and Sb endows ATO with excellent stability, as the 

inactive element can act as a buffer during lithiation of the other one. 

The charge-discharge curves in the first cycle for the ATO nanofibers tested at a current density 

of 0.2 A g
-1

 are shown in Figure 7b. All the curves exhibited similar profile, and the three samples 

exhibited similar initial discharge capacities, i.e. The initial discharge capacities were 1563 mA h g
-1

, 

1662 mA h g
-1

 and 1711 mA h g
-1

 and the initial Coulombic efficiencies were 61.8%, 62.9% and 

61.5% for ATO-400, ATO-500 and ATO-600, respectively. Both the discharge capacity and 

Coulombic efficiency for the first cycle are close to the good values reported for Sn-based electrodes, 

suggesting that the initial capacity is primarily determined by the grain size and crystallinity of Sn (and 

SnO2) [22]. The large initial capacity loss is mainly related to the decomposition of the electrolyte, 

formation of an SEI layer on the carbon surface and the irreversible process of Li2O formation, which 

is a characteristic of metal oxide anode materials [17, 21, 23].  

The rate performances of the ATO nanofibers were assessed in the current range between 0.1 A 

g
-1

 and 3.2 A g
-1

, with 10 cycles performed at each current and the results are shown in Figure 7c. It 

can be seen at a current density of 3.2 A g
-1

, ATO-400 still delivers a capacity of 327 mAhg
-1

 which is 

significantly higher than that of ATO-600 (81 mAhg
-1

). Furthermore, the discharge capacity of the 

three samples recovered to 794 mAhg
-1

, 774 mAhg
-1

 and 610 mAhg
-1

 as the current density returned to 

0.2 Ag
-1

, respectively. The excellent rate performance of ATO-400 is thought to be due to that larger 

surface area provides more reaction sites and shorter diffusion path of Li
+
 during insertion and 

extraction. It is noted the rate performance of ATO-500 is comparable to that of ATO-400 despite it 

possesses a lower surface area. This might be related to its optimal pore size which could facilitate the 

ion transportation and thus compensates the effect of lower surface area. 
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Figure 7. Electrochemical of ATO nanofibers: (a) CV curves, (b) the initial charge-discharge curves at 

0.2 Ag
-1

, (c) the capacities at different currents and (d) cyclic performance  

 

The cyclic performance was examined at a current density of 0.2 Ag
-1

 for 200 cycles. It can be 

seen from Figure 7d that the decay of capacity for ATO-400 is less serious than those prepared at 

higher temperatures. At the 200th cycle, the discharge capacities of ATO-400, ATO-500 and ATO-600 

samples were 730 mAhg
-1

, 685 mA h g
-1

, 329 mAhg
-1

, and the corresponding capacity retentions 

relative to the second cycle were 76%, 66% and 32%, respectively. The capacity retention at the 200th 

cycle for ATO-400 is significantly higher than those reported for ATO nanostrucutres [24] (54% at the 

30
th

 cycle) and composite of carbon nanotubes and Sn/SnO2 ultrafine nanoparticles [9]. The better 

cyclic performance of ATO-400 than those prepared at higher temperature could be due to that the 

residual carbon can effectively alleviate the volume changes during cycling [1, 2, 25].  

In Figure 8, the electrochemical impedance spectroscopy (EIS) of the ATO nanofiber 

composite was measured in the first cycle and the 100th cycle. The impedance spectrum exhibits a 

concave semicircle at high frequencies and a sloped line at lower frequencies, fitted by an equivalent. 

The circuit is shown in the inset of Figure 8a. In the equivalent circuit, Re is the resistance of the 

electrolyte, Rct is the resistance and charge transfer of the surface film, and Ws is the Warburg 

impedance CPE associated with the Li+ volume diffusion resistance. Component, [9, 26]. The fitted 

values of Re and Rct are summarized in Table 1. For the three ATO nanofibers, Rct increased 

significantly after 100 charge and discharge cycles, which is attributable to large volume changes 

during SEI film formation and cycling [27, 28]. Comparison of the three samples showed that the 

increase in Rct became more pronounced as the calcination temperature increased, confirming that 
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stable SEI film formation and residual carbon are critical to the cycling stability of the ATO-based 

electrode.  

 
 

Figure 8. EIS spectra of ATO nanofibers: (a) before cycling, and ad different cycles for: (b) ATO-400, 

(c) ATO-500 and (d) ATO-600. Inset to (a) is the equivalent circuit. 

 

Table 1. EIS fitting results for ATO nanofibers electrode. 

 

 ATO-400 ATO-500 ATO-600 

1st 100th 1st 100th 1st 100th 

Re (Ω) 3.9 14.5 6.2 11.8 4.1 11.9 

Rct (Ω) 86.5 186.7 77.4 225.5 165.7 309.1 

 

To further investigate the stability of the electrodes during charge/discharge, the batteries were 

disassembled and the morphology of the electrodes was examined again using SEM. Figure 9 shows 

the images of ATO-400 and ATO-600 electrodes after 200 cycles of charge/discharge. It can be seen 

the fibrous morphology is retained and the particles are still embedded (or attached) intimately in the 

carbon matrix after 200 cycles for ATO-400, and no appreciable change in particle size upon 

charge/discharge is observed (Figures 9a and 9b). In contrast, the average particle size decreased 

remarkably in ATO-600 and part of the hollow fibers started to break down, suggesting severe 

pulverization of this anode (Figures 9c and 9d). The pulverization of ATO-600 was also confirmed by 

the easy separation of the electrode material from the copper foil. These results confirmed that ATO-

400 possesses higher stability than ATO-600. 
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Figure 9. SEM images at different magnifications for the electrodes after 200 cycles of charge and 

discharge: (a) and (b) ATO-400; and (c) and (d) ATO-600.  

 

 

 

4. CONCLUSIONS 

In summary, it has been demonstrated that the morphology of SnCl2/SbCl3/PVP-derived ATO 

nanofibers develops from solid to hollow structures as the calcination temperature increases from 

400°C to 600°C, which was explained by bi-directional concentration gradients and different diffusion 

rates of the metal chlorides and oxides. As shown in Table 2, we compare the materials of this work 

with other tin / antimony materials already reportedWhen tested as anodes in LIBs, all the ATO 

nanofibers exhibit a high initial capacity.  

In addition, the cyclic stability and rate performance of the fibers calcinated at 400°C are 

superior to those treated at 600°C, and are also better than the good results reported for SnO2-based 

anodes. The excellent electrochemical performance was attributed to the nano-fibrous structure and the 

carbon matrix which can accommodate the volume expansion and provide short diffusion lengths for 

lithium ions and maintain the integrity during cycling. The results shown in this study reveal the 

importance of the combination of carbon composition and fibrous structure for the SnO2-based anodes, 

which would pave the way for further improvement of performance of LIBs.      
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Table 2. The electrochemical properties of the prepared SnCl2/SbCl3/PVP and other lithium battery 

negative electrode nanofibers were reported in the literature. 

 

Structure Current 

density 

Cycle Capacity reservation Mass loaded reference. 

 (mA·g−1)  (mAh·g−1)   

Sn-SnSb/C c 779 1200 378 97% [29] 

SnSb@rGO@

CMF 

350 200 318.5 68.2% [30] 

Tin/PCNFS 800 200 774 39.4% [31] 

SneSnSb 705 200 500 -- [32] 

Sb/MoS2/C 763 150 679.5 -- [33] 

SnCl2/SbCl3/P

VP 

1563 200 730 76%  This work 

 

 

SUPPORTING INFORMATION 

 

 
Figure S1 TG analysis of the ATO nanofibers and PVP fibers 

 

 
 

Figure S2 Deconvolved XPS spectra of the ATO nanofibers: (a) C1s spectra, (b) Sn3d spectra, and (c) 

Sb3d and O1s spectra. 
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Figure S3 Elemental mapping images of the ATO nanofibers: (a) ATO-400, (b) ATO-500 and (c) 

ATO-600. 
 

 
 

Figure S4 Cyclic voltammogram curves of ATO nanofibers: (a) ATO-500 and (b) ATO-600. 
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