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Deep eutectic solvents prepared by mixing choline chloride with urea or thiourea (1:2 molar ratio) 

were employed to evaluate their effects on the formation of cadmium electrodeposits on a reactive 

electrode composed of carbon steel 1018. The corrosion protection of carbon steel corresponds to the 

use of cadmium as a sacrificial anode. Differences in DES affect the electrochemical and corrosion 

behavior of cadmium. 
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1. INTRODUCTION 

Deep eutectic solvents (DES) have been classified as a type of ionic liquid, integrated with 

nonsymmetric ions, which are obtained by mixing a hydrogen bond acceptor (HBA) as a quaternary 

ammonium compound with a metallic salt or hydrogen bond donor (HBD) such as primary amines, 

carboxylic acids, alcohols or imines [1,2]. The mixture of the appropriate components according to the 

correct molar ratio generates a eutectic, characterized by a melting point lower than both of the 

individual components, attributed to the charge delocalization occurring between the halide ion and the 

HBD [3-6]. 

The most popular ammonium compound employed in DES is choline chloride (ChCl), a 

biodegradable and nontoxic salt [3]. This salt has been employed in different applications with urea or 
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ethylene glycol as HBD, with melting points of DES of 12°C and -12.9°C, respectively, enabling use 

as a solvent at room temperature – an important advantage with respect to typical ionic liquids and 

traditional organic solvents [2, 7, 8]. DES have utility in electrochemical applications, such as the 

preparation of metallic alloys, that are not possible in aqueous media [9, 10]. 

In electrochemistry, deep eutectics have been applied to antioxidant detection [11]; the 

electrochemical deposition of metals including Ag, Sn, Cr, and Cu; and the formation of sacrificial 

anodes [3,12,13]. In catalytic processes, these solvents are useful due to properties such as a wide 

liquid state range, nonflammability and low volatility [14]. DES gained popularity as solvents for 

nanoparticle synthesis [6], energy storage [15,16] and media for synthesis [17]. Choline chloride 

mixed with urea (1:2 molar ratio) is a common DES employed in many research fields, mainly owing 

to the advantages that it presents. The choline chloride-thiourea DES have been employed as media for 

synthesis or as additives in electrochemical processes, but their application as HBD components in 

DES is limited [12,18-20].  

 

Taking into account the advantages of employing DES in the formation of metallic 

electrodeposits, the present paper describes a comparison of cadmium electrodeposit corrosion 

evolution obtained in two DES, choline chloride-urea (ChCl-U) and choline chloride-thiourea (ChCl-

TU) on a carbon steel 1018 surface exposed to a corrosive medium (NaCl 3.0% wt). 

 

2. EXPERIMENTAL 

2.1. Reagents 

The reagents used in this work were purchased from Sigma-Aldrich, St. Louis, Mo, USA. DES 

were prepared by mixing ChCl with urea or thiourea at 1:2 molar ratios until a homogeneous and 

colorless dissolution liquid was observed; the temperature employed for dissolution and 

electrochemical analysis was 70 °C for ChCl-U, while for the dissolution of ChCl-TU, it was necessary 

to elevate the temperature to 80°C due to high viscosity. The concentration of CdCl2 (Sigma-Aldrich) 

on DES was 0.2 mol·kg
-1

, and the prepared solvents were stored at room temperature. Temperature 

control of DES was accomplished using a recirculating system (Brinkmann Lauda Econoline RE106).  

 

2.2. Electrodes and Instrumentation 

The electrochemical studies were performed by employing an electrochemical system (Autolab 

PGSTAT 30, Eco Chemie B.V., Netherlands) controlled by GPES software version 4.5. The 

electrochemical characterization was carried out in a three electrode cell. The working electrode 

consisted of a carbon steel surface AISI 1018 with 0.32 cm
2 

of exposed area (0.6-0.9% Mn, 0.15-

0.20% C, 0.04% P, 0.05% S, balance Fe), and a platinum wire was employed as an auxiliary electrode. 

The analysis was developed using an Ag/AgCl (MW-2021 Basi, West Lafayette, IN, USA) reference 

electrode. The carbon steel surface was renewed at the end of each analysis by sequential abrasion 
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using emery paper of 80, 600 and 1200 grid. After renewal, the surface was cleaned with acetone and 

washed with deionized water (Milli-Q Plus system, Millipore, Bedford, MA, USA).  

Cyclic voltammetry was carried out moving from open circuit potential to cathodic potential at 

a scan rate of 10 mV·s
-1

. The potentiodynamic polarization of Cd electrodeposited on a carbon steel 

surface and an unmodified surface was performed in NaCl aqueous solution (3% wt), prepared in 

deionized water obtained from a Milli-Q Plus system (Millipore, Bedford, MA, USA) with a resistivity 

not less than 18.2 MΩ. An anodic sweep was applied in the potential interval of ±100 mV (scan rate of 

1 mV·s
-1

) around the open circuit potential. 

 

3. RESULTS AND DISCUSSION 

3.1. Electrochemical behavior of Cd(II) in DES 

In Figure 1 (a,b), the cyclic voltammograms performed in ChCl-U and ChCl-TU with and 

without CdCl2 (0.2 mol kg
-1

) are shown. The potential window obtained on a carbon steel electrode in 

the two DES has a cathodic limit of about -1.4 V (vs. Ag/AgCl) and can be observed in a discontinuous 

black line in Figure 1 (a,b). The cathodic limit in the electrochemical window of DES that contains 

choline chloride has been associated with the formation of molecular hydrogen caused by the presence 

of water [21], which is associated with the hygroscopic nature of DES components.  

The voltammograms show a reduction signal attributed to the reduction of Cd(II) to Cd at -1.0 

and -1.2 V (vs. Ag/AgCl) in ChCl-U and ChCl-TU, respectively. A single signal is observed during the 

anodic sweep at -0.7 V and -0.8 V (vs. Ag/AgCl) for DES ChCl-U and ChCl-TU, respectively. 

Differences in potential can be attributed to increases in viscosity of the DES that involve a decrease in 

convection and an increase in resistance [22]. A positive displacement of the potential of the reduction 

peak and increases in current on DES has been associated with the ease of nucleation and growth of 

deposits on a surface [23]. 

 

 
 

Figure 1. Cyclic voltammograms obtained with a Cd(II) solution (0.2 mol·kg
-1

) on a carbon steel 1018 

electrode (S=0.32 cm
2
) in DES (a) ChCl-U and ChCl-TU. Sweep rate 10 mV·s

-1
. 
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The diffusion coefficient is associated with electroactive species movement in different media; 

in DES, the diffusion coefficient is related to viscosity and temperature [24,25]. The determination of 

the diffusion coefficient can be realized by employing different electrochemical techniques including 

voltammetry, convolutive potential sweep voltammetry, chronoamperometry and chronopotentiometry 

[26,27]. 

The diffusion coefficient is determined by employing peak current and potential values, but the 

main disadvantage is that not all the information is used. An appropriate alternative is the analysis by 

convolution of a series of cyclic voltammograms. In the convolution method, the voltammogram data 

are transformed into intensity-potential curves. The diffusion coefficient is obtained by employing the 

values of limit current m*, described by the equation: 

m*=nFSC0D
1/2 

where C0 is the concentration (mol·cm
-3

), D the diffusion coefficient of electroactive species 

(cm
2
·s

-1
), S is the electroactive area of the work electrode (cm

2
), F the Faraday constant, and n is the 

electron number involved in the electrochemical reaction [28]. In Figure 2, there are examples of 

voltammograms and convoluted signals obtained in DES ChCl-U (a) and ChCl-TU (b), which were 

employed for determination of diffusion coefficient in two solvents. The diffusion coefficient values of 

Cd(II) were 3.3(±0.4)×10
-7

 cm
2
·s

-1
 and 1.5(±0.7)×10

-7
 cm

2
·s

-1 
in ChCl-U and ChCl-TU, respectively. 

These values are lower than those obtained in aqueous media, 0.6×10
-5

 to 0.8×10
-5

 cm
2
·s

-1
 [29], and 

similar to diffusion coefficients obtained in ChCl-based DES for other ions. The value obtained in 

ChCl-TU is lower than that for ChCl-U: this difference is attributed to the viscosity and water content 

of the media [25]. It has been proposed that low diffusion coefficient values are associated with lower 

thickness of the electrodeposit coating, which negatively affects their corrosion protection [13,30]. 

 

 
Figure 2. Examples of cyclic voltammograms and their corresponding convoluted curves, obtained 

with a Cd(II) solution (0.2 mol·kg
-1

) on a carbon steel electrode (S=0.32 cm
2
) in DES (a) ChCl-

U and (b) ChCl-TU. The diffusion coefficient was obtained over the sweep rate interval from 

10 to 60 mV·s
-1

. 

 

3.2. Electrochemical nucleation of Cd at the carbon steel electrode 

The nucleation process of Cd(II) on a carbon steel electrode was analyzed by employing 

chronoamperometry. A series of experiments was executed, ranging from an initially selected potential 
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value where no reduction of cadmium deposition takes place to appropriate negative potentials that 

cause the nucleation and growth processes of Cd. Once every deposit was complete, the Cd was 

removed from the surface of the working electrode by anodic polarization. 

Current-time transients obtained by the performed experiments are included in Figure 3. On 

current-time lines obtained in two DES, it is possible to observe the characteristic zones corresponding 

to nucleation and growth processes. The applied step potential causes an initial sharp current spike 

associated with double layer charge; this behavior is followed by a rising current resulting from an 

increase of electroactive surface due to formation and growth of Cd nuclei on the working electrode 

surface, and the current reaches a characteristic maximum value (jmax) at a corresponding time (tmax), 

after which the current decreases as a result of a controlled diffusion process.  

In Figure 3, it is possible to observe that the time required to reach maximum current decreases 

as a result of an imposition of higher negative overpotentials. To define the Cd nucleation type, 

dimensionless experimental current-time transients were constructed by employing 

chronoamperometry data obtained in two DES. Experimental data were compared with theoretical 

dimensionless current-time transients from Scharifker and Hills models [31]. In Figure 3, 

dimensionless experimental data obtained by chronoamperometry and theoretical current-time 

transients for both types of nucleation are represented together.  

 

 
 

Figure 3. Current-time transients obtained with a Cd(II) solution (0.2 mol·kg
-1

) on a carbon steel 

electrode (S=0.32 cm
2
). Comparison of the dimensionless curves for instantaneous and 

progressive nucleation. (a) ChCl-U and (b) ChCl-TU. 

 

The comparison in the DES ChCl-U shows that Cd follows a behavior of instantaneous 

nucleation. The process in the DES ChCl-TU shows a tendency for a mechanism of instantaneous 

nucleation. Instantaneous nucleation has been described as an immediate activation of a small number 

of sites for nucleation, while progressive nucleation corresponds to a slow and continuous process with 

the formation of a large number of active sites [32,33].  

It has been shown that imposed potential and high temperatures cause the acceleration of nuclei 

growth and that, consequently, a thicker electrodeposit was obtained [12]. A deviation in the 
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nucleation mechanism is related to the co-reduction of the electrolyte medium, affecting the 

morphology of the deposit and the corrosion behavior [23].  

 

3.3. Polarization analysis 

Cd electrodeposits formed by employing the DES ChCl-U and ChCl-TU (-0.85 V vs. Ag/AgCl, 

10 min) on a carbon steel surface were immersed in a corrosive medium (NaCl, 3% wt). The 

comparison of corrosion behavior was analyzed by potentiodynamic polarization. Figure 4(a) shows 

the Tafel curves of the modified and unmodified surfaces at time 0 and 6 h. The corrosion potential 

observed at the Cd modified surface (-0.82 V when ChCl-U was used and -0.80 V in the case of ChCl-

TU) is lower than that obtained with an unmodified surface (-0.51 V). The corrosion potential (Ecorr) 

and density corrosion current (jcorr), measured each hour during six hours, are listed in Table 1. With 

respect to corrosion current, the value obtained at modified carbon steel is higher: this behavior is 

characteristic of sacrificial anodes [13,34,35]. 

 

On the other hand, the corrosion potential (Ecorr) changes in the positive direction during the 

first hour of exposure to corrosive solution (Figure 4(b)), and then, the corrosion potential remains 

constant during the next six hours. This behavior can be attributed to the presence of cadmium on the 

surface, followed by the formation of cadmium corrosion products. The electrodeposited cadmium and 

the products of corrosion formed by exposure to the aggressive environment are useful to protect 

carbon steel. Similar behavior involving resistance to corrosion has been observed in Ni and Ni-Si 

layers, in which the presence of Si improves resistance to corrosion [23].  

 

 
 

Figure 4. (a) Potentiodynamic polarization of cadmium electrodeposits formed in ChCl-U, ChCl-TU 

and carbon steel 1018 (C.1018) immersed in NaCl (3.0%wt). (b) Variation of corrosion 

potential vs. exposition time of cadmium electrodeposits and unprotected surface. 
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Table 1. Electrochemical parameters obtained from polarization curves of unprotected surface 

(C.1018) and cadmium coatings formed in ChCl-U and ChCl-TU.  

 
 C.1018 ChCl-U ChCl-TU 

Time 

(h) 

Ecorr 

(V) 

jcorr 

(μA·cm
-2

) 

Ecorr 

(V) 

jcorr 

(μA·cm
-2

) 

Ecorr 

(V) 

jcorr 

(μA·cm
-2

) 

0 -0.51 18.99 -0.82 70.38 -0.80 37.56 

1 -0.46 10.69 -0.74 126.25 -0.70 61.41 

2 -0.49 21.85 -0.68 90.94 -0.71 62.88 

3 -0.49 20.68 -0.66 81.09 -0.71 59.03 

4 -0.50 36.92 -0.65 62.66 -0.71 55.69 

5 -0.51 27.80 -0.65 66.34 -0.71 58.03 

6 -0.52 35.03 -0.66 60.56 -0.71 58.63 

 

 

4. CONCLUSIONS 

The formation of electrochemical deposits is influenced by DES characteristics including 

composition, viscosity, temperature and electrical conductivity. DES ChCl-U and ChCl-TU allow the 

formation of cadmium electrodeposits. The nucleation mechanism is more evident in ChCl-U and is 

associated with an increase in viscosity of ChCl-TU. The corrosion behavior is similar in cadmium 

electrodeposits formed in both DES. Even though the diffusion coefficient of ChCl-TU is lower than 

that obtained in ChCl-U and aqueous media, it is possible to use DES during Cd electrodeposition. 
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