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This paper studies the convective noise generated in transducers found in electrochemical motion 

sensors. The theoretical model uses a Langevin method applied to equations of hydrodynamics. The 

proposed approach was applied to a transducer with a planar geometry composed of four small electrodes 

deposited on the walls of the thin channel of the transductive element. For realistic parameters, the 

modelling results agree well with the experimental data. 
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1. INTRODUCTION 

Progress in electrochemical motion sensing technology over the last 10 years has resulted in the 

emergence of a new class of highly sensitive sensors, such as short-period and broadband seismometers, 

seismic accelerometers and angular-motion sensors [1], [2], [3], [4], [5]. The key component in these 

electrochemical motion sensors is a four-electrode electrochemical cell immersed in a liquid electrolyte 

for use as a signal converting element [6], [7], [8], [9]. Device operation is based on the fact that an 

inertial force generates electrolyte flow near the electrodes. In turn, the hydrodynamic flow influences 

transport of the electrolyte component and, consequently, the inter-electrode electrical current. The 

variation in the electrical current is readout from the sensor output. 

The expansion of practical applications is hampered by the fact that some of the problems 

associated with the fundamental nature of the processes occurring in the converting elements of 

electrochemical sensors remain unsolved, which limits possible improvements to their technical 

parameters. These problems include identification of the nature of self-noise in electrochemical sensors. 
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The nature of self-noise in electrochemical sensors is complex: it is conditioned by the combined 

action of a number of physical mechanisms [8], [10]. According to the most recent studies, the main 

contributors to sensor self-noise are thermohydrodynamic self-noise[11], convective noise[12], 

geometry noise[8] and noise due to signal conditioning electronics[13]. 

Some of the above-mentioned mechanisms, such as thermohydrodynamic self-noise and noise 

due to signal conditioning electronics, are universal for different sensor types and have been previously 

studied in detail [14]. Other sources of noise are specific to electrochemical sensors, including 

convective noise, which limits the resolution of the sensor over a wide frequency range [13], [15], [16]. 

Moreover, convective noise is associated with the fundamental properties of the signal converting 

element. As a result, understanding and accurately modelling convective type noise is particularly 

important for realizing further sensor improvements. Currently, only experimental studies for this type 

of noise have been published [12], with a limited understanding of the physical processes responsible 

for the generation of convective noise as well as a lack of theoretical models. 

The theoretical studies carried out in this work are based on the hypothesis that the output current 

self-noise for the electrochemical transducer, which has been experimentally studied previously in [12] 

and named convective noise, is conditioned by the stochastic hydrodynamic flow in the working fluid 

solution. 

 

2. THEORY 

A number of electrochemical transducer configurations have been described in the literature [17], 

[18], [19], [20]. All of the reported designs comprise two pairs of microelectrodes placed in the channel 

so that for any direction of inertial force the liquid moves from anode to cathode in one pair of electrodes 

and from cathode to anode in the other pair. The working solution is a highly concentrated aqueous 

iodide salt solution (usually potassium iodide) with a small amount of molecular iodine. In the aqueous 

solution, iodide salt dissolves into positive  and negative ions. Iodine  is present in the form of 

tri-iodide ions . If a voltage is applied between the electrodes, the following reversible electrochemical 

reaction takes place on the electrodes: 

 (1) 

The reaction proceeds from left to right on the anode and in the opposite direction on the cathode. 

Each elementary reaction is associated with the transfer of two electrons across the electrode surface. 

Thus, the electrical current can be determined if the flow of tri-iodide ions across the electrode is known. 

This fact is used in a convective diffusion-based model of charge transfer enabling one to consider the 

transfer of only one type of ion, , thus, simplifying the mathematical problem.  are referred to as 

active ions. Transport of tri-iodide ions without electric migration is described by the convective-

diffusion equation: 

 
(2) 

where c denotes the  ion concentration and  denotes the diffusion coefficient. 
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The hydrodynamic velocity  is determined by the Navier-Stokes equation for a non-

compressible liquid: 

  

 

(3) 

where  is viscosity,  is pressure, and  is the external volumetric force. 

Typically, the boundary conditions on the channel surfaces are a zero hydrodynamic velocity 

with the following conditions for the active component concentration: 

 

 

 

(4) 

The first equation expresses the impermeability condition of the dielectric surface. The second 

equation expresses the condition of the limiting current at the cathodes. The third equation expresses the 

assumption of a constant concentration of the active component at the anodes, which, although not 

completely justified, is often used in calculations to simplify the mathematical model. The applicability 

of this condition was discussed in a number of previously published papers [21], [22], [23]. It has been 

found that significant differences are observed in investigations of anode currents compared to more 

complex boundary conditions that take into account the kinetics of the electrode reactions, as well as for 

the study of cathodic currents at significant fluid velocities. In this study, we are only interested in 

cathodic currents, with the analysis limited to low fluid velocities typical for hydrodynamic fluctuations, 

which allows the use of the simplified boundary condition (4). 

 

 

 

Figure 1. Planar MET cell schematic. 

To specify a mathematical model, consider a thin plane channel with four electrodes deposited 

on one of the channel walls. We introduce a coordinate system with its origin on the surface containing 

the electrodes, as shown in Figure 1. Both the anodes and cathodes have the same width  and are 
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separated by a distance .  denotes the thickness of the channel. We assume that the channel thickness 

d is small compared to the channel length L and width s. Under this condition, as shown in [24], [25], 

for random hydrodynamic flows, the tangential components of the hydrodynamic velocities  𝑣𝑥, 𝑣𝑦 are 

significantly larger compared to the normal component 𝑣𝑧.The Navier-Stokes equation for the tangential 

component  can be written in the form: 

Место для формулы. 
(5) 

Then, is a random volumetric force acting on the liquid, P denotes the local pressure, 

which changes due to stochastic variations in , while maintaining validity for the continuity 

equation: 
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
= 0 (6) 

The boundary conditions are a no-slip condition on the solid surfaces and a constant pressure 

condition 𝑃(𝑥, 𝑦, 𝑧)|±𝑙/2 = 𝑐𝑜𝑛𝑠𝑡 on the ends of the channel. Note that the latter limitation does not 

influence the possibility of the pressure to vary inside the channel. 

We then integrate (6) over 𝑦. Denoting 𝑠 as the channel width, 𝑃̃ = ∫ 𝑃𝑑𝑦
𝑠

0
, 𝑉𝑥 = ∫ 𝑣𝑥𝑑𝑦

𝑠

0
. 

Taking into account 𝑣𝑦|
𝑦=0,𝑠

= 0, (6) results in the following: 

𝜕𝑉𝑥

𝜕𝑥
= 0 (7) 

Next, we consider equation (5) and integrate it over  and over  Denoting  ∆𝑃 = 𝑃|𝑙

2

− 𝑃|
−

𝑙

2

 as 

the pressure drop at the channel ends, . Then, equation (5) is written as: 

 
(8) 

The solution for equation (8) is given by: 

 

(9) 

Under the conditions of adhesion to the channel walls at and : 

 

(10) 

To describe the random forces acting on the liquid, we use the following approach [26]. 

Assuming the force  can be described by a sum of derivatives of the stress tensor with respect 

to the spatial coordinates: 

 .  (11) 

xv
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The tensors are uncorrelated together, and therefore, their contributions to the 

hydrodynamic velocity fluctuations can be regarded to be independent from each other. As discussed in 

[25], the first summand in (11) dominates in thin channels and the other terms can be removed from 

consideration. Putting (11) in (5), one obtains: 

 

(12) 

where  . We require (12) to be solved under the condition of the absence 

of integral liquid flow in the channel. For this, one considers the average speed over a cross section 

and finds  under this condition. The resulting equation is given below: 

 

(13) 

We consider the velocities at two points  and . For the correlation of the random velocities 

 , we use [27]: 

‘

 
(14) 

The correlation functions  are calculated to be: 

  

(15) 

After integrating (13) were the following: 

 

(16) 

Next, we consider the convective diffusion equation. Assuming that the hydrodynamic velocity 

is small, the solution to the convective diffusion equation (3) is found to be:  

 (17) 

where  is the equilibrium concentration of the active component,  is the concentration in 

the stagnant electrolyte, and  denotes changes in the concentration linear in hydrodynamic velocity.  

Considering only the terms that do not depend on the velocity and those that are linear in velocity 

after a Fourier transform of the first equation in (3) on the  coordinate, we obtains the following system.  
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(18) 

The solution of (18) can be expressed as follows: 

 

  

(19) 

where . is the Fourier transform of the 

electrical current density on the surface . Index  below the integral sign indicates integration 

over the electrode surface. We use the second and third equations for the boundary conditions (4) to find 

the unknown . This is done by entering  in (19) and carrying out an inverse Fourier 

confirmation. The result is given by the following set of integral equations: 

  

 

, and  

(20) 

In general, equation (20) can be solved using only numerical methods. To simplify the 

mathematical formulation, we assume that the electrical current density over the electrodes is uniform. 

This assumption is valid if the other characteristic sizes of the system (channel width, distance between 

electrodes, diffusion length) are larger than the electrode size. Otherwise, this can be considered to be a 

qualitative approximation. Under this assumption: 
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Substituting this equation into (20) results in the following equations: 

 

(22) 

Then, the power spectral density for the electrical current fluctuations due to the random 

hydrodynamic flow is given by the following equations. 

 

(23) 

After substituting into (16) and integrating over  and , equation (23) results in the following 

formulae: 

 

(24) 
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(25) 

 

 

3. RESULTS AND DISCUSSION 

Note that at high frequencies 𝑝, 𝑝1, 𝑟, 𝑟1, 𝜆, 𝜆1 ≈ √𝑖𝜔 𝐷⁄  and the current noise spectral density 

〈𝐼𝜔
2 〉 is approximated by ~𝜔−1.5 behavior: 
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(26) 

Another limit is 𝜔 → 0; i.e., the noise power spectral density 〈𝐼𝜔
2 〉 does not depend on the 

frequency: 
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For other frequencies, the integrals in (22) - (24) are calculated numerically. Figure 2 shows the 

result of the calculation for several sets of system parameters:  - curve 1, 
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 - curve 2,  - curve 3, and  - curve 4. For each 

combination of parameters,  is normalized over its maximum value. The horizontal axis gives a 

non-dimensional frequency . 

We compare the experimental data reported in different papers [12, 15, 16]. The noise for the 

ampoule-type transducer with interelectrode distances of 40 and 100 microns has been studied in [12] 

for frequencies below 20 Hz, corresponding to  and . For the tested samples, after 

removal of temperature drifts, the resulting noise spectral density is approximately flat at  before 

showing a decrease with increasing frequency. The theoretical curves (Figure 2) show similar behavior. 

It should be emphasized that the correspondence is fairly good for curves 3 and 4, while curves 1 and 2 

are only flat at . 

 

 

Figure 2. Normalized noise spectral density over its maximum value  calculated according to 

(22) - (24) vs the normalized frequency. 

 

Legend:  Curve 1 (blue) , curve 2 (dark red) , curve 3 (green) 

- , and curve 4 (light red)  - curve 4. Black line 

dependence. 
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agrees with the behavior of curve 3 in the normalized frequency range from 10 to 100. Generally, at the 

very least, a qualitative correspondence is found between the modeling data and experimental curves. 

 

 

 

4. CONCLUSIONS 

The novelty of the presented results lies in the fact that they suggest, for the first time, a 

theoretical description for convective noise in the transducer of an electrochemical motion sensor. The 

model is based on the assumption that this noise is conditioned by the spatially non-uniform variation of 

hydrodynamic flow in the electrolyte, which is related to the influence of random local forces. 

Mathematically, the noise generating mechanism is described by the Navier-Stokes equation with a 

random term on the right-hand side. 

The initial system of equations was reduced to integral equations to calculate the electric current 

density over the electrode surface – both steady and alternating, depending on the mechanical signal. 

The result of the calculations is a frequency dependence for the spectral power of the electric current 

fluctuations that is in correspondence with previously published experimental results. 
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