International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Facial Synthesis of 3D MnO₂ Nanofibers Sponge and Its Application in Supercapacitors

Chuanyun Wan^{1,*}, Haiyan Shen², Xiangrong Ye², Fanhong Wu¹

¹ School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418, Shanghai, People's Republic of China,

² Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China, *E-mail: <u>cywan@sit.edu.cn</u>

Received: 28 June 2018 / Accepted: 21 Sepember 2018 / Published: 5 November 2018

Mesoporous Al₂O₃ template was facially constructed by hydrolysis of aluminum nitrate solution, and 3D MnO₂ foam was fabricated by redox reaction of Mn^{2+} and MnO_4^- in the nanoholes of Al₂O₃ template, followed by sacrificial dissolution of the Al₂O₃ matrix. The as-prepared 3D MnO₂ sponge is composed of cross-linked worm-like nanofibers which promise enhanced charge transfer capability. The specific surface area and porosity of the MnO₂ sponge is affected by the concentration of Mn²⁺ ion when the pores of Al₂O₃ template were immersed, and higher specific surface area, higher pore volume and hence better electrochemical performance were developed at lower Mn²⁺ concentration. When 0.02mol L⁻¹ of Mn²⁺ solution was used to immerse the Al₂O₃ template, a specific capacitance of 215.3F g⁻¹ can be achieved for the resultant 3D MnO₂ sponge in 1 mol L⁻¹ Na₂SO₄ aqueous electrolyte at 2mV s⁻¹ scan rate, and all as-prepared 3D MnO₂ sponges provide good long-term charging/discharging stability with approximate 96% retention of capacitance at 5mV s⁻¹ scan rate after 2000 cycles, showing that the facially synthesized 3D MnO₂ sponge is a promising electrode material for supercapacitor.

Keywords: 3D MnO₂ sponge; nanofiber; mesoporous Al₂O₃ template; supercapacitor.

1. INTRODUCTION

The ever-increasing ecological issues and energy crisis have triggered worldwide searching for renewable energy sources and better energy-storage systems demanded by a variety of application, including portable electronics, power supply devices and electric vehicles[1-4]. Electrochemical supercapacitors, as a branch of energy-storage devices, have attracted tremendous research interest due

to their high power density, fast charging/discharging rate and long cycle life [5,6]. The performance of electrochemical supercapacitors, to a great extent, is controlled by the structural and electrochemical properties of electrode materials. Typical electrode materials for electrochemical supercapacitors include carbon, transition metal oxide and conductive polymer[7-9]. Although carbon materials with high surface area exhibit high specific power and excellent cycle life in electrical double layer capacitor and have been successfully commercialized in practice[10, 11], their electrodes usually provide low capacitance values[11, 12].

MnO₂, a transition metal oxide, has been considered as one of the most prominent electrode materials for electrochemical capacitor due to its low cost and high theoretical capacitance (1370 F g ¹)[13]. Its faradaic pseudocapacitance arises through two mechanisms, adsorption/desorption of ions on the interface between electrolyte and electrode during charging/discharging, and the Faraday reactions on the active surface of MnO_2 [9, 11, 12, 14]. However, the poor electrical conductivity of MnO_2 determines that a fast redox process in general could only occur on the outer surface of the material [15]. Hence, nanosization of MnO_2 to shorten the transportation distance of electrons from electrolytes to the inner phase of the material has become a common strategy to improve the conductivity as well as the performance of MnO₂ in supercapacitor electrodes[8, 16]. Various MnO₂ nanomaterials (nanorod [16], nanoflower [16-18], three-dimensional (3D) nanocomposite [13, 19-21], nanowire [22], etc.) have been reported to upgrade the electrochemical performance of MnO₂-based supercapacitors. Furthermore, considering the instability and collapsing easiness of one-dimensional/two-dimensional architectures [23, 24], MnO₂ nanocomposites with 3D architectures have been paid more attention [13, 19, 20, 25]. In this context, we report a simple and cost-effective method to prepare a threedimensional MnO₂ nanostructured sponge material with high charge transfer capability and excellent electrochemical performance for potential application in supercapacitor electrodes. Herein mesoporous Al₂O₃ was synthesized by hydrolyzing aluminum nitrate solution and used as sacrificial template.

2. EXPERIMENTAL

2.1 Reagents and synthesis

All reagents were analytical-grade and used as received without purification. The mesoporous alumina sponge was prepared by the similar process described in literature[26]. 0.1mol L⁻¹ (NH₄)₂CO₃ aqueous solution was dropped slowly into 50mL of 0.2mol L⁻¹ Al(NO₃)₃ solution with vigorous magnetic stirring until a sudden formation of transparent gel took place and the stirring was stopped. The gel was aged at 30 $^{\circ}$ C for 24h, and then heated at 100 $^{\circ}$ C for 10h. Afterwards, the obtained solid was transferred to a furnace and heat-treated at 300 $^{\circ}$ C for 10h in air at a heating rate of 5 $^{\circ}$ C min⁻¹. The as-prepared alumina was ready for serving as sacrificial template to prepare 3D MnO₂ sponge.

 $3D \text{ MnO}_2$ sponge was fabricated according to the following steps. Alumina sponge was soaked in MnCl₂ solution (0.02mol L⁻¹, 0.1mol L⁻¹ and 1mol L⁻¹, respectively) and stirred for 2h. The alumina was then separated by filtration and redispersed in 0.01mol L⁻¹ KMnO₄ aqueous solution for 2h to form MnO₂ in Al₂O₃ sponge matrix. The MnO₂/Al₂O₃ composite was collected and washed three times with deionized water. Finally, the alumina containing MnO_2 was immersed in 2mol L⁻¹ NaOH solution at 80 0 C to dissolve Al₂O₃ matrix completely, and the black-brown 3D MnO₂ sponge residue was collected by filtration, washed with deionized water and dried at 60 0 C for 12h in a vacuum oven. The overall fabrication flow of 3D MnO₂ sponge is charted in Fig.1.

Figure 1. Schematic illustration of the synthesis of 3D MnO₂ sponge

2.2 Material characterization and electrochemical measurements

The structure and morphology of the as-synthesized MnO₂ samples were characterized by Xray powder diffraction (XRD, PANalytical Almelo, The Netherlands, CuK α anode, λ =1.54187Å), scanning electron microscopy(SEM, FEI Quanta 200 EEG) and transmission electron microscopy(TEM, Hitachi 600, Japan). Nitrogen adsorption and desorption experiments were carried out at 77.3K with a Micrometritics ASAP 2020. The pore size distribution was calculated by the Barrett-Joyner-Halenda (BJH) method.

The electrochemical behavior of the obtained samples was measured using three-electrode system at room temperature on a GAMRY electrochemical working station (Gamry Reference 600^+ Instruments, USA). To form working electrodes, 65 wt.% of as-prepared MnO₂ sponge powder, 25 wt.% of super P (conductive carbon), 10 wt.% of poly-(tetrafuloroethylene) (PTFE) binder and small amount of ethanol were mixed homogenously and then pressed onto nickel foam current collectors. The typical loading of the MnO₂ material was ca. 10 mg cm⁻². The electrodes were dried at 50 0 C for 10h in a vacuum oven. Saturated calomel electrode (SCE) and platinum foil were used as reference electrode and counter electrodes, respectively. The working electrolyte was 1 mol L⁻¹ Na₂SO₄ solution. Electrochemical studies were performed by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) techniques.

The specific capacitance (C F g^{-1}) of a single electrode is calculated from CV curves by the formula [8]

 $C = \left(\int i \, dv\right) / \left(2 \, v \, \Delta V \, m\right)$

Where i (A g⁻¹) is the current density, v (mV s⁻¹) is the potential scan rate. $\Delta V(V)$ is the applied potential window, and m is the mass of MnO₂ in working electrode.

3. RESULTS AND DISCUSSION

The morphological analysis of the as-prepared Al_2O_3 template was performed in terms of SEM and the image is shown in Fig.2a. One can observe that massive white Al_2O_3 monoliths are an aggregation of nanoparticles. The N₂ adsorption-desorption isotherm of Al_2O_3 template is shown in Fig.2b, with the pore size distribution calculated by BJH method as inset. Obviously, the Al_2O_3 monolithic skeleton contains mesopores with relatively uniform pore size around 4.0 nm, therefore very thin nanostructure could be expected to generate using such Al_2O_3 sample as sacrificial template.

Figure 2. SEM image (a) and N₂ adsorption-desorption isotherm (the inset shows the pores size distribution) (b) of Al₂O₃ template.

Figure 3. SEM (a) and TEM (b) images of 3D MnO₂ sponge

The SEM and TEM images of the as-prepared MnO_2 massive particles are shown in Fig.3a and b, respectively. The SEM image reveals that sponge MnO_2 monoliths consist of aggregated nanostructure with clearly observable holes. The jagged morphology is characteristic of the Al_2O_3

template. The TEM image further indicates that the aggregated nanostructure is composed of wormlike entangled nanofibers which are the duplication of Al_2O_3 template's mesopores. These results indicates that Mn^{2+} can penetrate into the pores of Al_2O_3 template when Al_2O_3 templates are put into the MnCl₂ solution and absorbed in nanopores of Al_2O_3 template when Al_2O_3 templates are separated from the MnCl₂ solution by filtration. The MnO₄⁻ anions will react with Mn²⁺ to produce MnO₂ in the nanopores of Al_2O_3 template and these nanopores become the microreactors for MnO₂ generation. Hence, the pores of Al_2O_3 template are successfully duplicated. The formation mechanism of 3D MnO₂ is similar to that of 1D carbon nanofiber from a sacrificial template[27]. Compared 1D or 2D nanostructures[16, 23, 24], Such 3D sponge morphology of the as-prepared MnO₂ with nanofibers is highly preferable for electrochemical application because the electrolyte ions could penetrate the pores to reach the inner electroactive sites and it will also own an excellent structure stability.

Figure 4. XRD patterns (a), N₂ adsorption-desorption isotherms (b) and pore size distribution of MnO₂ sponge obtained with different concentration of MnCl₂ solution. 1, 0.02mol L⁻¹; 2, 0.1mol L⁻¹; 3, 1mol L⁻¹.

The XRD patterns of the as-prepared MnO_2 with different concentration of $MnCl_2$ solution to immerse Al_2O_3 template are displayed in Fig.4a. All the samples have similar XRD patterns, with weak and broad peaks around 2θ = 37.7 and 66^0 , indicating that all the formed MnO_2 is poorly crystalline[8]. The similar XRD patterns of MnO_2 obtained from different conditions also reveals that the formation

mechanism of MnO_2 doesn't change with the concentration of Mn^{2+} solution. Fig.4b is the nitrogen adsorption-desorption isotherms of MnO₂ synthesized with different concentration of MnCl₂ solution. All samples show very similar adsorption-desorption characteristics. The hysteresis loop in the relative pressure (P/P_0) rage of 0.45 to 0.95 indicates the presence of a mesoporous structure. The specific areas and the calculated specific volumes for samples obtained in different preparation conditions are collected in Table 1. Although the concentration of the starting material (Mn²⁺) doesn't change the characteristic of pore structure, it does change the specific surface area of the as-prepared MnO₂. The calculated specific surface area of the MnO₂ sample prepared from 0.02mol L⁻¹ MnCl₂ solution is 456.9 m² g⁻¹. When the concentration of MnCl₂ solution increases to 0.1 and 1 mol L⁻¹, the specific surface area of the obtained MnO₂ changes to 365.5 and 319.8 m² g⁻¹, respectively. The reduction of the specific surface area of the as-prepared MnO₂ indicates that higher concentration of starting material will leave larger amount of Mn^{2+} in the pores of Al₂O₃ template, producing higher density of MnO₂ nanofiber. Fig4.c is the BJH pore-size distribution calculated from the isotherm. When the concentration of MnCl₂ solution increases from 0.02 to 1 mol L⁻¹, the pore characteristic of the asprepared MnO₂ doesn't change greatly except the amounts of pores. The pore size is almost around 4.0nm and the pore volume is ca. $0.37 \text{cm}^3 \text{ g}^{\text{-1}}$ when the concentration of MnCl_2 solution is low $(0.02 \text{ mol } L^{-1})$. With the increase of the starting material's concentration to 0.1 and 1 mol L^{-1} , pitifully, the pore volume reduces to 0.25 and 0.23 $\text{cm}^3 \text{g}^{-1}$ respectively, and the pore size distribution of the asprepared MnO₂ becomes broader. The reduction of both specific surface area and pore volume indicates that the amount of the starting material in pores of Al₂O₃ template is an effective factor to adjust the characteristic of the as-prepared MnO₂ which is expected to affect its electrochemical performance for supercapacitor application.

Table 1. The specific area and the calculated specific volume for different samples

The concentration of Mn^{2+} (mol L ⁻¹)	0.02	0.1	1
pore size (nm)	3.9	3.9	3.9
Specific surface area $(m^2 g^{-1})$	456.9	365.5	319.8
Specific pore volume(cm ³ g ⁻¹)	0.37	0.25	0.23
6 7 6 7 7 7 7 7 7 7 7 7 7	1.0 b 0.8 c 0.6 c 0.4 c 0.2 c 0.0 c		0.1A/g 0.2A/g 0.5A/g 1A/g
EN(vs SCE)	5	2000 0000	

Figure 5. the CV curves and charge-discharge curves of typical 3D MnO₂ sponge electrode

Fig.5a shows the typical cyclic voltammogram of the as-prepared 3D MnO₂ at various scan rates in the potential range between 0 and 1.0V (versus SCE). All voltammograms are nearly rectangular mirror images with respect to the zero-current line, revealing that the electrode made from 3D MnO₂ is charged and discharged at pseudoconstant rate throughout the voltammetric cycle and shows a perfect electrochemical capacitive behavior [8, 28]. The pair of redox peaks appears in each CV curves indicates that the charge storage of as-prepared MnO₂ involves the intercalation / deintercalation of H⁺ or M⁺ into the oxide particle which often occur within the near-surface region except for the adsorption/desorption of protons(H^+) or alkaline cations (M^+) on MnO₂ surface [8, 29]. Fig.5b shows galvanostatic charge-discharge behaviors of the as-prepared MnO₂ sponge electrode at different current densities in a potential range of 0-1.0V versus SCE. Both charge and discharge portions remain approximately symmetric and linear, also indicating that 3D MnO₂ electrode has good capacitive behaviors. However, the slight voltage plateau in charge portion indicates that the 3D MnO₂ electrode behaves like a galvanic cell. This result may be resulted from that the highly strained nanoparticles in 3D nanofiber sponge enhance surface adsorption and facilitate the faradaic reaction[29]. Even though, the 3D MnO₂ electrode behaves like a capacitor rather than a galvanic cell and can be used in the so-called pseudocapacitor. Both CV tests and chronopotentiometry results reveal that the as-prepared porous MnO₂ sponge using mesoporous Al₂O₃ as sacrificial template is suitable for active electrode materials for supercapacitors. The specific capacitances of 3D MnO₂ electrodes from different concentration of Mn²⁺ solution calculated from CV curves are summarized in Fig.6. At the scan rate of $2mV s^{-1}$, the MnO₂ sponge sample from 0.02mol L⁻¹ Mn²⁺ solution provides a maximum capacitance value of 215.3 F g⁻¹, which may be ascribed to its highest specific surface area and porosity. With the increase of scan rates, the capacitance value of the obtained MnO₂ decreases, indicating that the higher charge transfer resistance exists at high scan rates. Even this, the as-prepared 3D MnO₂ sponge with low concentration of Mn^{2+} solution shows the best rate capability(, revealing the best electrochemical performance for supercapacitor applications.

Figure 6. Specific capacitance of MnO₂ sponge obtained with different concentration of MnCl₂ solution. 1, 0.02mol L⁻¹; 2, 0.1mol L⁻¹; 3, 1mol L⁻¹.

Figure 7. Nyquist plots for MnO₂ prepared with different concentrations of manganese chloride (1: 0.02mol L⁻¹, 2: 0.1mol L⁻¹, 3: 1mol L⁻¹)

Fig.7 shows the Nyquist plots for the as-prepared 3D MnO₂ sponge electrodes from different concentration of Mn^{2+} solution, where Z' and Z" are the real and imaginary parts of the impedance, respectively. The inset in Fig.7 displays the equivalent circuit diagram used for the EIS fitting. For all the MnO₂ electrodes, no obvious semicircle can be seen at high frequencies except a straight line at frequencies. The semicircle represents the charge transfer resistance (R_{ct}) at the low electrode/electrolyte interface which is related to the electronic resistance within the electrode materials [8, 18]. The less obvious semicircle at high frequencies indicates that the obtained MnO₂ electrode has a fast charge transfer ability (Rct is very small), which benefits to the capacitive performance[8, 30, 31]. The straight line at lower frequency region (Warburg, W) can be attributed to the diffusion process at the electrode/electrolyte interface. Compared to the line at lower frequency for 3D MnO₂ electrode obtained from 0.02 mol L^{-1} Mn²⁺, the vertical line at lower frequencies for the 3D MnO_2 electrodes obtained from higher concentration of $Mn^{2+}(0.1 \text{ and } 1 \text{ mol } L^{-1} \text{ MnCl}_2)$ represents the easier ion diffusion in the structure, indicating a more ideal capacitance behavior[17, 22, 32]. This result may be due to the existence of larger pore in the samples obtained from higher concentration(see Fig.4c). however, the estimated equivalent resistance, R_s (which is combination of ionic resistance of the electrolyte, intrinsic resistance of active materials and contact resistance at he active materialscurrent collector interface) for MnO₂ sample prepared from low concentrated Mn²⁺ solution is much lower than that of MnO_2 samples obtained from other thicker concentrated Mn^{2+} solution, indicating a better charge movement in this electrode[8, 17, 33]. As shown in Fig.7, The fast kinetics of MnO₂ sponge electrode may be ascribed to the nanofiber characteristic in porous MnO₂ foam, which provides more electrochemically active surface area for reversible faradaic reaction by shorten the path for ion diffusion.

Figure 8. Variation of the specific capacitance for MnO_2 electrode prepared with different concentrations of manganese chloride as a function of the number of cycles. 1: 0.02mol L⁻¹, 2: 0.1mol L⁻¹, 3: 1mol L⁻¹

 Table 2. electrochemical performance of 3D MnO₂ sponge in comparison with electrodes based on different MnO₂ nanostrures reported in the literature

Type of materials	Specific capacitance	Cycling stability	references
MnO ₂ nanowires	590 F g^{-1} at 10mV s^{-1}	80.9% after 2000 cycles	[34]
MnO ₂ nanowires	50-70 F g ⁻¹ at 1-5 mV s ⁻¹	less than 97% after 1000 cycles	[35]
MnO ₂ nanorods	185 F g^{-1} at 1 A g^{-1}	less than 91% after 1000 cycles	[16]
MnO ₂ nanosheets	$121F g^{-1}$ at $1A g^{-1}$	71.4% after 3000 cycles	[36]
MnO ₂ spheres	188-203 F g ⁻¹ at 2mV s ⁻¹	-	[37]
Flower-like MnO ₂	495 F g^{-1} at 1A g^{-1}	91% after 1000 cycles	[16]
Flower-like MnO ₂	150.9 F g^{-1} at 0.5A g^{-1}	90.28% after 1000 cycles	[38]
3D MnO ₂ sponge	215.3 F g^{-1} at 2mV s^{-1}	more than 96% after 2000 cycles	our works

To extensively understand the electrochemical properties of as-prepared MnO_2 sponge materials, the cycling stability of the MnO_2 electrodes were also tested by CV at 5mV s⁻¹ for 2000cycles and is presented in Fig.8. Through the various initial capacitances is obtained for different MnO_2 sponge, the capacitance retentions of all the MnO_2 electrodes excess more than 96% of their initial capacitance after 2000 cycles. Compared with the results of MnO_2 electrodes reported in litherature(Table 2), the MnO_2 nanofiber sponges electrode exhibits an excellent cycling stability even though its specific capacitance is not enough attractive. Good cycle life of MnO_2 nanofiber sponges electrode shows excellent chemical stability for the three-dimensional structure of the obtained MnO_2 , further proving the promising potential of 3D MnO_2 sponge as active materials of supercapacitor electrodes.

4. CONCLUSIONS

3D MnO₂ Sponge composed of worm-like nanofiber was successfully prepared by redox reaction of Mn^{2+} and MnO_4^- using mesoporous Al_2O_3 as sacrificial template. Different concentrations of $MnCl_2$ solution was used to immerse the Al_2O_3 template and to prepare MnO_2 sponge. The structure and morphology of the resultant 3D MnO_2 were characterized by XRD, SEM, TEM and BET methods. The electrochemical performance of MnO_2 sponge was investigated by CV, chronopotentiometry and EIS. 3D MnO_2 sponge consists of entangled worm-like nanofibers and its physical and chemical properties are affected by the concentration of the starting material which immerses the holes of Al_2O_3 template. MnO_2 Sponge materials exhibit excellent charge transfer capability, high specific capacitance and excellent cyclic stability, showing promising properties as active electrode materials for supercapacitors.

THIS STUDY WAS FUNDED BY AUTHORS THEMSELVES. THE AUTHORS DECLARE THAT THEY HAVE NO CONFLICT OF INTEREST.

References

- 1. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, F.F. Pasquale, T.M. Richard, S. Dai. Adv. Mater., 23(2011) 4828
- J.A. Lee, M.K. Shin, S.H. Kim, H.U. Cho, G.M. Spinks, G.G. Wallace, M.D. Lima, X. Lepro, M.E. Kozlov. R.H. Baughman, S. Kim. *Nat. Commun.*, 4(2013) 1
- 3. X.H. Lu, M.H. Yu, G.M. Wang, Y.X. Tong, Y. Li. Energy Environ. Sci., 7(2014) 2160
- 4. Z. Gao, W.L. Yang, J. Wang, N.N. Song, X.D. Li. Nano Energy, 13(2015) 306
- 5. M.F. EI-Kady, V. Strong, S. Dubin, R.B. Kaner. Science, 335(2012) 1326
- 6. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar. *RSC Adv.*, 5(2015) 45935
- 7. R.S. Diggikar, D.J. Late, B.B. Kale. RSC Adv., 4(2014) 22551
- 8. C.Y. Wan, L.Y. Yuan, X.R. Ye, F.H. Wu. Electrochim. Acta, 147(2014) 712
- 9. L.Y. Yuan, C.Y. Wan, X.R. Ye, F.H. Wu. Electrochim. Acta, 213(2016) 115
- 10. P. Simon, Y. Gogotsi. Nature Mater., 7(2008) 845
- 11. B.A. Mei, L. Pilon. Electrochim. Acta, 255(2017) 168
- 12. G.P. Wang, L. Zhang, J.J. Zhang. Chem. Soc. Rev., 41(2012) 797
- 13. X. Luo, J.Y. Yang, D. Yan, W. Wang. X. Wu, Z.H. Zhu. J. Alloys compd., 723(2017): 505
- 14. M. Li, M. Zhou, Z.Q. Wen, Y.X. Zhang. J. Energy Storage, 11(2017) 242
- 15. M. Toupin, T. Brousse, D. Belanger. Chem. Mater., 16(2004) 3184
- 16. J. Chu, D.Y. Lu, J. Ma, M. Wang. X.Q. Wang, S.X. Xiong. Mater. Lett., 193(2017) 263
- 17. G.A.M. Ali, M.M. Yusoff, E.R. Shaaban, K.F. Chong. Ceram. Int., 43(2017) 8440
- 18. Y.H. Ding, N. Zhang, J.Y. Zhang, X.R. Wang, J.Q. Jin, X.F. Zheng. Y.Z. Fang. Ceram. Int.,43(2017) 5374
- 19. L. Zhang, T.H. Li, X.L. Ji, Z.Y. Zhang, W.B. Yang, J.J. Gao, H. Li, C.Y. Xiong, A.L. Dang. *Electrochim. Acta*, 252(2017) 306
- 20. K. Xiao, J.W. Li, G.F. Chen, E.Q. Liu, N. Li, Y.Z. Su. Electrochim. Acta, 149(2014) 341
- 21. L.Y. Yuan, C.Y. Wan, L.L. Zhao. Int. J. Electrochem. Sci., 10(2015) 9456
- 22. L. Khandare, S. Terdale. Appl. Surf. Sci., 418(2017) 22
- 23. Y.M. He, W.J. Chen, X.D. Li, Z.X. Zhang, J.C. Fu, C.H. Zhao, E.Q. Xie. ACS nano., 7(2013):174

- 24. G.X. Wang, Q.Q. Tang, H. Bao, X.W. Li, G.C. Wang. J. Power Sources, 241(2013) 231
- 25. C. Liu, T. Peng, C.L. Wang, Y. Lu, H.L. Yan, Y.S. Luo. J. Alloys compd., 720(2017) 86
- 26. X.F. Shang, X.G. Wang, W.X. Nie, X.F. Guo, X.J. Zou, W.Z. Ding, X.G. Lu. J. Mater. Chem., 22(2012) 23806
- 27. H.J. Liu, X.M. Wang, W.J. Cui, Y.Q. Dou, D.Y. Zhao, Y.Y Xia. J. Mater. Chem., 20(2010)4223
- 28. D.D. Zhao, Z. Yang, L.Y. Zhang, X.L. Feng, Y.F. Zhang. Solid-state Lett. 14(2011) A93
- 29. O.A. Vargas, A. Caballero, L. Hernan, J.Morales. J. Power Sources, 196(2011) 3350
- 30. P. Sen, A. De, A.D. Chowdhury, S.K. Bandyopadhyay, N. Agnihotri, M. Mukherjee. *Electrochim. Acta*, 108(2013) 265
- 31. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou. *Energy Environ. Sci.*, 4(2011) 1855
- 32. C.Y. Wan, L.Y. Yuan, H.Y. Shen. Int. J. Electrochem. Sci., 9(2014) 4024
- 33. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, C.D. Lokhande. J. Electrochem. Soc., 157(2010) A812
- 34. D.S. Patil, S.A. Pawar, J.C. Shin. J. Ind. Eng. Chem., 62(2018) 166
- 35. L. Khandare, S. Terdale. Appl. Surf. Sci., 418(2017) 22
- 36. Q.Q. Tang, M.Q. Sun, S.M. Yu, G.C. Wang. Electrochim. Acta, 125(2014) 488
- 37. A. Gambou-Bosca, D. Belanger. Electrochim. Acta, 201(2016) 20
- 38. J.Y. Dong, G. Lu, F. Wu, C.X. Xu, X.H. Kang, Z.M. Cheng. Appl. Surf. Sci., 427(2018) 986

© 2018 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).