Corrosion Inhibition Potentials of 4-(4-bromophenyl) Thiosemicarbazide for Mild Steel In 1.0 M HCl as Theoretical and Experimental

Abdelhakim Alrjaibi¹, Emel Bayol², Fatma Kandemirli³,*

¹ Department of Materials Science & Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37200 Kastamonu, Turkey
² Department of Chemistry, Faculty of Art and Science, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
³ Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37200 Kastamonu, Turkey
*E-mail: hakimrj2011@yahoo.com

Received: 26 June 2018 / Accepted: 8 January 2019 / Published: 7 February 2019

This examination researched the impact of changing measures of 4-(4-bromophenyl) Thiosemicarbazide (4-BrPhTSC) by assessing air conditioning impedance and AC and flow potentiometry in a 1 M HCl arrangement at 20°C. In an unlimited arrangement, when the E_{corr} value is -0.518 V, the concentration of the inhibitor solution changes and the grouping of the inhibitor changes. The present's thickness of the anodic and cathodic districts is bring down contrasted with that of the 1.0 M HCl arrangement, with an I_{corr} estimation of 158.78 μA•cm^{-2} in the uninhibited arrangement and 8.10 μA•cm^{-2} at the 1x10^{-2} M concentration of 4-BrPhTSC. It very well may be seen that as the grouping of the inhibitor builds, the consumption current thickness value diminishes, and the restraint productivity value likewise increments. The percent restraint proficiency extended from 71% to 95%. For the uninhibited and most astounding grouping of 4-BrPhTSC arrangement, the estimations of R_p^{blank} and R_p^{inh} were 235 and 2006 Ω•cm^{-2}, separately, CPE_{blank} and CPE_{inh} were 348 and 36 μF•cm^{-2}, individually, n_{blank} and n_{inh} were 0.94 and 0.84. As the Rp esteem builds, the CPE esteem and n diminish as the inhibitor focus increments, potentially because of abatement in neighborhood dielectric steady or an expanded thickness at the metal/arrangement interface. The adsorption of the inhibitor on the surface of the low carbon steel fits in with the Langmuir show. Also, the adsorption harmony steady and the adsorption free vitality were evaluated. For the subsidiaries of 4-BrPhTSC, the estimation of ΔG^0_{ads} and is -36.00 kJ mol^{-1}, demonstrating that the adsorption of these inhibitors includes two sorts of communications: physical adsorption and chemisorption. The thickness utilitarian hypothesis (DFT) of the B3LYP work with the 6-311G (d,p) premise set was performed on 4-BrPhTSC as appeared in Table 1, Table 2.

Keywords: Corrosion, inhibition, low carbon steel, Thiosemicarbazide, quantum chemistry research.
1. INTRODUCTION

A major issue to be dealt with in industries is corrosion, which causes significant burdens as to cost for business. Structures of metallic nature in different industries are in contact with corrosive materials and processes, for which acid solutions are commonly applied to remove pickling and rust. Materials such as acidification inhibitors are also used to defend against corrosion of metal structures[1]. In this respect, organic inhibitors have appeared to be a safe replacement [2]. As since the inhibitor can easily form covalent bonds with metal surface (also known as ‘chemisorption’), or by means of electrostatic interaction (referred to as ‘physical adsorption’) between metal surface and inhibitor [3, 4]. It has been previously shown that adsorption is primarily dependent on p-electrons, molecular heteroatoms, functional groups and benzene rings to induce inhibitor molecules and more absorbed on the surface of smooth steel. The best effect of organic compounds can be obtained by increasing the electron density of heteroatoms such as sulphur, phosphorus, nitrogen and oxygen also considered as the ‘adsorption center [5, 6]. In this regard, lately the effectiveness of thiosemicarbazone compounds also as known as organic corrosion inhibitors has been largely that focused on by the research community [7, 8], with reports of the potential of creating complexes with different metals [9, 10].

These compounds owe their increased activity and effectiveness against corrosion to the presence of nitrogen and sulphur, thus generating more inhibition as opposed to compounds with just one of the elements mentioned. Furthermore, compounds with sulphur tend to be more active in general in comparison to oxygen-containing ones with identical structures [11, 12].

In line with this information, the present work investigates the adsorption and the inhibitory properties of 4-BrPhTSC (Figure 1). In the case of dynamic kinetic polarization, the methods such as linear polarization resistance and electrochemical impedance,; low carbon steel in 1.0 M HCl solution was pierced. Besides, the density functional theory (DFT) is performed for 4-BrPhTSC.

![Figure 1. Chemical structure of 4-BrPhTSC](image)

2. EXPERIMENTAL WORK

2.1. Material and test solution

Three-electrode battery made of low carbon steel, p assembly was used for testing, the counter electrode was 1 x 1 cm platinum, and Ag / AgCl (3.0 M KCl) was used as the reference electrode. Low carbon steel (MS) having a mass fraction of 0.11% Si, 1.01% Cr, 0.99% Mn and 97.89% Fe was used
for electrochemical measurement purposes. The sample is embedded in the polyester; the surface area of 0.6359 cm2 is in contact with the corrosive medium, how much corrosive material is present, and the copper wire provides electrical conductivity.

Before every attempt, the low carbon steel surface was mechanically polished using different emery papers having different grades. The sample is embedded in the polyester; the surface area of 0.6359 cm2 is in contact with the corrosive medium, how much corrosive material is present, and the copper wire provides electrical conductivity. Different grades (1000, 600 and 150) of sandpaper, then they are degreased by using acetone, and rinsed with distilled water and placed in a battery. Tests were conducted in 1.0 M HCl solutions with and without of 1x10$^{-5}$ – 1x10$^{-2}$ M of 4-BrPhTSC.

2.2. Electrochemical techniques

Electrochemical experiments were performed by using electrochemical analyser and computer controlled CHI 660B. Before electrochemical measurement, stabilization duration of 1h took place, enough to reach the potential for open circuit corrosion (E_{corr}).

Electrochemical tests were done at 293 K. The electrochemical impedance spectroscopy (EIS) experiment was performed under an AC signal with peak-to-peak amplitude of 5 mV at the open circuit potential and a frequency range of 105 Hz to 0.003 Hz.

At a scan rate of 0.1 mV s$^{-1}$, the potential range was evaluated from E_{corr} to be 10 mV, and Rlp was measured from the slope of the potential and current. Potentiodynamic polarization measurements were carried out by changing the electrode potential at -300 mV cathodic potential and at +300 mV anodic potential of the corrosion potential versus Ag/AgCl at a scan rate of 2 mV s$^{-1}$.

2.3. Quantum chemical analysis

Theoretical evaluation was performed on the B3LYP function using density functional theory (DFT) with a 6-311G (d,p) basis set, by using Gaussian program [13] Other calculations include quantum chemical index, energy of the lowest unoccupied molecular orbital and the highest occupied molecular orbital (HOMO), (LUMO), electronegativity (χ), energy gap (ΔE), softness (σ), hardness (η) chemical potential (μ) and electrophilicity index (ω), Nucleofugality (ΔE_n), and Electrofugality (ΔE_e).

3. RESULTS

3.1. Potentiodynamic polarization measurements

Figure 2 shows the polarization curves of carbon steel electrodes with and without different concentrations of 4-BrPhTSC molecules at 293K. Dynamic potential polarization parameters such as corrosion potential (E_{corr}), corrosion current density (I_{corr}) and cathode Tafel constant (β_c), percentage of inhibition efficiency (IE %) are shown in Table 1. A sample polarization curve is shown in Figure 2.

\[
\theta = \frac{I_{corr} - I_{corr}^°}{I_{corr}^°} \\
IE\% = \theta \times 100
\]
Although the E_{corr} value was -0.518 V in the uninhibited solution, it moved in the positive direction in a short time as the concentration of the inhibitor increased. As can be clearly seen from Figure 3, the current density of the anode and cathode regions is lower compared to the 1.0 M HCl solution. The i_{corr} and E_{corr} also written differently in low key the change was made accordingly, with a value of 158.78 μA•cm$^{-2}$ in the uninhibited solution and 8.10 μA•cm$^{-2}$ at the 4-BrPhTSC concentration of 1×10$^{-2}$M.

Table 1. Corrosion parameters obtained from potentiodynamic polarization curves for MS in 1.0 M HCl in the absence and presence of 4-BrPhTSC in various concentrations at 1h

<table>
<thead>
<tr>
<th>C(M)</th>
<th>E_{corr} (V/Ag/AgCl)</th>
<th>i_{corr} (μA/cm2)</th>
<th>- β_c (mV/dec)</th>
<th>IE (%)</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>-0.518</td>
<td>158.78</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1×10$^{-5}$</td>
<td>-0.518</td>
<td>46.84</td>
<td>87</td>
<td>71</td>
<td>0.71</td>
</tr>
<tr>
<td>1×10$^{-4}$</td>
<td>-0.515</td>
<td>21.46</td>
<td>98</td>
<td>86</td>
<td>0.86</td>
</tr>
<tr>
<td>1×10$^{-3}$</td>
<td>-0.524</td>
<td>13.38</td>
<td>117</td>
<td>92</td>
<td>0.92</td>
</tr>
<tr>
<td>1×10$^{-2}$</td>
<td>-0.468</td>
<td>8.10</td>
<td>151</td>
<td>95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

With increase in inhibitor concentration, corrosion current densities declined, and also the inhibition efficiency values elevated in all solutions. The percentage inhibition efficiency values varied from 71 % to 95 %.
According to the polarization curve, in the presence of an inhibitor, the curve moves toward the low current density region. When 4-BrPhTSC is added to the acidic solution, both the anode metal dissolution and the cathodic hydrogen evolution reaction are inhibited. The 4-BrPTSC might adsorb and create a covering sheath on the mild steel, thus inhibiting corrosion. As can be seen from Table 1, the maximum displacement of \(E_{\text{corr}} \) value is about 50 mV. Since the maximum change in \(E_{\text{corr}} \) value is less than 85 mV, it can be concluded that the inhibitor is a mixed inhibitor.

Cathodic Tafel slope \((\beta_c) \) values elevate with the inhibitor. The Tafel slope changes indicate that inhibitors affect hydrogen evolution reaction kinetics, in turn implying elevations in the energy Proton discharge barriers result in reduced gas release. In addition, the polarized cathode branches form a very parallel Tafel line, i.e., the addition of the inhibitor does not change the hydrogen evolution process, and a charge transfer mechanism occurs due to a decrease in surface hydrogen ions of the low temperature steel. In this way, the actual surface area available for \(H^+ \) ions is reduced, while the actual reaction mechanism remains unaffected [14,15].

In the anodic field – one has to remember - for potentials higher than -350 mV, a low-concentration inhibitor does not alter the current-potential features; yet, in settings containing the highest amounts of an inhibitor, the desorption potential shifts to a more positive potential value defined as ‘desorption potential’. Here, the desorption rate of the inhibitor is greater than its adsorption level, i.e. the type of inhibition of the inhibitor depends on the electrode potential [16, 17].

3.2. Electrochemical impedance spectroscopy (EIS)

(EIS) is an in situ, non-destructive, fast and applicable method for evaluating metal features covered by organic materials. In addition, there is a wide range of applications for this method to study metal protection by means of organic inhibitors and their characteristics. The approach has offered sound and proven outcomes thanks to low interference with the bilayer at the interface of the metal solution. What’s more, EIS offers an intricate insight into electrochemical system characteristics as well as large amounts of information on kinetic and mechanical properties [18, 19].

When analysing impedance data, we applied the view program to model the physical phenomena occurring at the interface of the metal solution. Other circuit models as shown in Figure 3 were used to simulate experimental impedance data for low carbon steel corrosion in corrosive media with and without inhibitors. The representations are as in the following:

\[
R^p = R_{\text{ct}} + R_d \quad \text{and} \quad R_p = R_{\text{ct}} + R_d + R_a + R_f \quad \text{for uninhibited and inhibited solutions.}
\]

- \(R_s \): solution resistance,
- \(R_{\text{ct}} \): charge transfer resistance,
- \(R_d \): diffusion layer resistance,
- \(R_a \): resistance of accumulated material at the metal/solution interface,
- \(R_f \): membrane resistance,
- \(R_{\text{por}} \): pore resistance,
- \(\text{CPE} \): double layer capacitance and film capacitance, used for Unsuppressed and suppressed solution [20, 21]. Here, CPE is a constant phase element and \(n \) is a phase shift explained as a degree of uniformity surface [22, 23].

\[
Z_{\text{CPE}} = Y_0 - 1 (j\omega)^{-n} \quad 3
\]
In the case where \(Y_0 \) is a scale factor, \(j^2 = -1 \) is a hypothesis number, \(w \) is the angular frequency in rad-1 (\(w = 2\pi f_{\text{max}} \), \(f_{\text{max}} \) is the frequency at which the imaginary part of the impedance is the largest). The inhibition efficiency percentage \(\text{IE} \) (%) is determined using the following expression [23].

\[
\theta = \frac{R_p - R_p^\circ}{R_p}
\]

\[\text{IE}\% = \theta \times 100\]

where \(R_p \) and \(R_p^\circ \) are the polarization resistances of the electrodes both with and without the inhibitor, respectively.

Table 2 shows the corresponding corrosion parameters obtained from the Nyquist curves for MS in 1.0 M HCl. Also, Figure 4 depicts the impedance plot (a) Nyquist, (b) Bode modulus and (c) phase angle representation.

Table 2. Corrosion parameters obtained for MS in 1.0 M HCl in the absence and presence of 4-BrPhTSC at 293K

<table>
<thead>
<tr>
<th>C(M)</th>
<th>(E_{\text{corr}}) (V)</th>
<th>(R_s) (Ω.cm(^{-2}))</th>
<th>(R_p) (Ω.cm(^{-2}))</th>
<th>CPE ((\mu\text{F.cm}^{-2}))</th>
<th>(n)</th>
<th>(\text{IE}) (%)</th>
<th>(R_p^\circ)</th>
<th>(\text{IE}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 M HCl</td>
<td>-0.520</td>
<td>2</td>
<td>110</td>
<td>348</td>
<td>0.94</td>
<td>-</td>
<td>102</td>
<td>-</td>
</tr>
<tr>
<td>1x10(^{-5})</td>
<td>-0.516</td>
<td>1.1</td>
<td>235</td>
<td>278</td>
<td>0.89</td>
<td>53</td>
<td>454</td>
<td>77</td>
</tr>
<tr>
<td>1x10(^{-4})</td>
<td>-0.513</td>
<td>1.7</td>
<td>656</td>
<td>68</td>
<td>0.90</td>
<td>83</td>
<td>795</td>
<td>87</td>
</tr>
<tr>
<td>1x10(^{-3})</td>
<td>-0.511</td>
<td>1.8</td>
<td>1122</td>
<td>42</td>
<td>0.87</td>
<td>90</td>
<td>1272</td>
<td>92</td>
</tr>
<tr>
<td>1x10(^{-2})</td>
<td>-0.471</td>
<td>2.7</td>
<td>2006</td>
<td>36</td>
<td>0.84</td>
<td>95</td>
<td>2119</td>
<td>95</td>
</tr>
</tbody>
</table>
As the theory of electrochemical impedance spectroscopy suggests, low carbon steel often does not produce a complete semicircle. This difference from the ideal semicircular shape is usually explained by the surface dispersion, impurities, dislocations, grain boundaries, adsorption of the inhibitor, formation of the porous layer, and frequency dispersion caused by uniformity on the surface of the electrode. According to Table 2, the values of R_p^{blank} and R_p^{inh} are 235 and 2006 Ω.cm$^{-2}$, respectively, and the values of $\text{CPE}^{\text{blank}}$ and CPE^{inh} are 348 and 36 μF.cm$^{-2}$, respectively, and the values of n^{blank} and n^{inh} are 0.94 and 0.84, which are unsuppressed. The highest concentration is the 4-BrPhTSC solution.

As the R_p values rise, the CPE value and n decrease with increasing inhibitor concentration, which may be due to a decrease in local dielectric constant or an increase in thickness of the metal solution interface.

The maximum concentration of linear polarization resistance (R_p) values based on the blank LPR method and 4-BrPhTSC showed an increase from 102 to 2119. (Table 2). The correlation between EIS and LPR results is at an acceptable level.

3.3. Adsorption Isotherms

These define the interaction that the inhibitor and MS surface have. The adsorption of inhibitor molecules on the metal surface is a in a way a replacement phenomenon where water molecules taken in change places with organic molecules. The experimental data yielded is fitted to numerous adsorption isotherms, whose Langmuir isotherm proved to offer the best fit. The Langmuir isotherm is a plot of C vs. C/θ as appears in Eq. (6), [24].

$$C/\theta = 1/K_{\text{ads}} + C$$

Where K_{ads} is the equilibrium constant of adsorption, C is the concentration of the inhibitor, and θ is the surface coverage. Further, the standard free energy of adsorption ($\Delta G^\circ_{\text{ads}}$) can be computed from Eq- (7), [24].
\[K_{ads} = \frac{1}{55.5} \exp \left(-\frac{\Delta G_{ads}^\circ}{RT} \right) \]

The Langmuir adsorption isotherms of 4-BrPhTSC are shown in Figure 5.

\[y = 1.0537x + 2E-05 \]
\[R^2 = 1 \]

Figure 5. Langmuir adsorption of 4-BrPhTSC on the mild steel surface in 1.0 M HCl solution

The values of \(K_{ads} \) 50000 and negative Gibbs free energy of adsorption 36.00 kJ mol\(^{-1}\) are obtained from Eq. (6) and Eq. (7), respectively.

The high \(K_{ads} \) for the 4-BrPhTSC implies higher adsorption on MS surfaces in 1.0 M HCl solution at 293 K. The value of the standard free energy of adsorption represents the simultaneous adsorption of the molecule on the surface of MS and the high interaction between the inhibitor molecule and the MS.

Typically, the standard value of free energy of -20 kJ mol\(^{-1}\) or less is related to the electrostatic interaction between charged molecules and charged metal surfaces (also known as "physical adsorption"). Those from a negative value of -40 kJ mol\(^{-1}\) or more include loading or transferring an inhibitor molecule to a metal surface to form a coordinate covalent bond (or "chemisorption") [25, 26].

In our measurements, for 4-BrPhTSC, the value of \(-\Delta G_{ads}^\circ\) was 36.00 kJ mol\(^{-1}\), thus indicating that adsorption of these inhibitors requires two types of interactions: chemisorption and physical adsorption [25, 26].

4. COMPUTATIONAL DETAILS

4.1. Quantum chemical calculations

\[x = -\mu = -\left(\frac{\partial \mu}{\partial N} \right)_{v(r)} \]
\[\eta = \frac{1}{2} \left(\frac{\partial \mu}{\partial N} \right)_{v(r)} = \frac{1}{2} \left(\frac{\partial^2 \mu}{\partial N^2} \right)_{v(r)} \]
Pearson and Parr came up with a mathematical expression for the reactivity descriptors mentioned earlier in accordance ionization energy and electronic affinity values of the compounds using a finite difference approximation [27]. Eqs. (8) And (9) these formulas obtained are given as:

\[
\eta = \frac{1-A}{2} \quad 10
\]

\[
x = -\mu = \frac{1+A}{2} \quad 11
\]

Based on the theory, the negative values of the most occupied and least empty molecular orbital energy, in turn, account for ionization energy and electron affinity (-\(E_{\text{HOMO}} = I\) and \(-E_{\text{LUMO}} = A\)). Henceforth, factors such as chemical hardness, chemical potential and electronegativity are measured with the formula below and in theoretical terms [28].

\[
\mu = -x = \frac{E_{\text{LUMO}}+E_{\text{HOMO}}}{2} \quad 12
\]

\[
\eta = \frac{E_{\text{LUMO}}+E_{\text{HOMO}}}{2} \quad 13
\]

R.G. Pearson, in this regard, suggests that softness is the multiplicative reciprocal of hardness [29].

\[
\sigma = \frac{1}{\eta} = \frac{2}{E_{\text{LUMO}}-E_{\text{HOMO}}} \quad 14
\]

Electrophilicity can serve as a reactive descriptor to be applied to compare electron-donating ability in molecules [30]. Lately, Parr suggested an electrophilicity index [31], which has been commonly utilized in numerous works related to site selectivity, toxicity and corrosion as inhibitors of molecule performance. This index is elaborated with mathematical formulas. Also, it has to be kept in mind that Parr is expressed as the reciprocal multiplicative reciprocal of nucleophility [32].

\[
\omega = \frac{\mu^2}{2\eta} = \frac{x^2}{2\eta} \quad 15
\]

\[
\varepsilon = \frac{1}{\omega} \quad 16
\]

According to Figure 6, the combined form of inhibitor molecules, the HOMO location, is primarily dispersed over the S atom from the thiosemicarbize group; whereas the LUMO location is distributed on all molecules, thus indicating that electrons are transferred from the orbital of S to the metal and that those electrons in the occupied orbital of metal are moved to the LUMO benzene ring and the S atom.

The frontier orbital energies calculated with B3LYP/6-31G (d,p) are shown in Figure 7 under four conditions: neutral and gaseous phase neutral forms, and gas phase and aqueous phase protonated forms. In all the cases, the calculated (\(E_{\text{HOMO}}\)) values for the B3LYP/6-311g(d, p) baseline set for 4-BrPhTSC molecules were -5.974 eV, -6.257 eV, -9.642 eV, and -6.807 eV, respectively. Also, 4-BrPhTSC, 4-BrPhTSC-w, 4-BrPhTSC-p and 4-BrPhTSC-p-w were observed in the molecule.
Figure 6. The optimized molecular structure, HOMO, LUMO and total density of 4-BrPhTSC.

Figure 7. Calculated HOMO, LUMO and energy gap parameters for the compound in neutral and water forms in the gas phase and pronated phase using B3LYP/6-311G(d,p) basis set.

The E_{LUMO} values of these molecules are calculated with B3LYP/6-1G (d,p) basis set for the 4-BrPhTSC molecules in four situations as -1.041 eV, -1.177 eV, -5.369 eV and -1.702 eV. These results have also been reached in the molecules 4-BrPhTSC, 4-BrPhTSC-w, 4-BrPhTSC-p and 4-BrPhTSC-pw, respectively.
Table 3. Calculated parameters by B3LYP/6-311G (d, p) of molecules under study for neutral and protonated form in gas and water phase

<table>
<thead>
<tr>
<th>Compound</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>ΔE (eV)</th>
<th>η (eV)</th>
<th>σ (eV)</th>
<th>X (eV)</th>
<th>μ (eV)</th>
<th>ω (eV)</th>
<th>ΔE_n (eV)</th>
<th>ΔE_m (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BrPhTSC</td>
<td>-5.974</td>
<td>-1.041</td>
<td>4.933</td>
<td>2.467</td>
<td>0.203</td>
<td>3.507</td>
<td>-3.507</td>
<td>2.494</td>
<td>0.220</td>
<td>7.234</td>
</tr>
<tr>
<td>4-BrPhTSC-w</td>
<td>-6.257</td>
<td>-1.177</td>
<td>5.080</td>
<td>2.540</td>
<td>0.197</td>
<td>3.717</td>
<td>-3.717</td>
<td>2.720</td>
<td>0.273</td>
<td>7.707</td>
</tr>
<tr>
<td>4-BrPhTSC-w-p</td>
<td>-8.070</td>
<td>-1.702</td>
<td>5.105</td>
<td>2.553</td>
<td>0.196</td>
<td>4.254</td>
<td>-4.254</td>
<td>3.545</td>
<td>0.567</td>
<td>9.076</td>
</tr>
</tbody>
</table>

The frontier orbital energies calculated with B3LYP/6-311++G (2d, 2p) are shown in Table 4 under four conditions: neutral forms and protonated forms in gas phase and aqueous phase.

In all four cases, the calculated E_{HOMO} values for the B3LYP/6-311++G (2d, 2p) basis set for 4-BrPhTSC molecules were -6.033 eV, -6.293 eV, -9.649 eV, and -6.812 eV, respectively. The E_{LUMO} of these molecules values calculated with B3LYP/6-311++G (2d, 2p) basis set for 4-BrPhTSC molecules in four situations (neutral forms and protonated forms in gas phase and aqueous phase) were 1.210 eV, 1.265 eV, 2.383 eV and 5.527 eV respectively.

The E_{HOMO} increases are as follows: 4-BrPhTSC > 4-BrPhTSC-w > 4-BrPhTSC-w-p > 4-BrPhTSC-p. As seen in Table 4, the values are -6.033 eV, -6.293 eV, -6.812 eV, -9.649 eV, respectively.

Table 4. Calculated parameters by B3LYP/6-311++G (2d, 2p) of molecules under study for neutral and protonated form in gas and water phase

<table>
<thead>
<tr>
<th>Compounds</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>ΔE (eV)</th>
<th>η (eV)</th>
<th>σ (eV)</th>
<th>X (eV)</th>
<th>μ (eV)</th>
<th>ω (eV)</th>
<th>ΔE_n (eV)</th>
<th>ΔE_m (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-BrPh-TSC</td>
<td>-6.033</td>
<td>-1.210</td>
<td>4.823</td>
<td>2.411</td>
<td>0.207</td>
<td>3.622</td>
<td>-3.622</td>
<td>2.720</td>
<td>0.304</td>
<td>7.547</td>
</tr>
<tr>
<td>4-BrPh-TSC-w</td>
<td>-6.293</td>
<td>-1.265</td>
<td>5.029</td>
<td>2.514</td>
<td>0.199</td>
<td>3.779</td>
<td>-3.779</td>
<td>2.840</td>
<td>0.318</td>
<td>7.876</td>
</tr>
</tbody>
</table>

For the E_{LUMO} increases in 4-BrPhTSC > 4-BrPhTSC-w > 4-BrPhTSC-w-p > 4-BrPh TSC-p, the values are -1.210 eV, -1.265 eV, -2.383 eV, and -5.527 eV, respectively. The energy gap increases for 4-BrPhTSC-p > 4-BrPhTSC-w-p > 4-BrPhTSC > 4-BrPhTSC-w, the values are 4.122 eV, 4.430 eV, 4.823 eV, and 5.029 eV, respectively.

5. CONCLUSION

Adsorption in inhibitors used on the surface of mild steel revealed with the Langmuir isotherm takes place with both in physical and chemical form. With added inhibitor concentration, corrosion
current densities dropped while inhibition efficiency values elevated. Tafel polarization revealed a combined form of inhibition pattern in the corrosion inhibitor under study.

In addition, our EIS study shows that as polarization resistance becomes more, the CPE and n values decline and concentration increases because of reduction in the local. The dielectric constant and/or the additional thickness of the metal/solution interface. The value of ΔG°ads is -46.00 kJ mol⁻¹ of 4-BrPhTSC, which means that the adsorption of these inhibitors occurs in two ways: chemisorption and physical adsorption.

Quantum chemistry studies complement the experimentally observed order of inhibition efficiency. Based on EHOMO and ELUMO values, natural species substances Materials are more likely to interact with the metal surface. In the same way, the ΔE values imply that protonated species have more tendencies toward interaction with the metal surface.

References

© 2019 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).