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The corrosion susceptibility of selected metallic materials frequently employed in prosthetic dentistry 

has been examined with electrochemical methods. Results have been compared with data derived from 

breakthrough potential measurements performed with these materials before. Mostly agreement and/or 

close correlation were found, discrepancies are discussed and tentatively assigned to the different 

experimental conditions. 

 

 

Keywords: Palladium-based alloy, non-precious metal alloys, dentistry, corrosion, electrochemical 

impedance measurements 

 

 

1. INTRODUCTION 

Alloys of precious, semi-precious or non-precious metals have been used in the manufacturing 

of removable and fixed prosthetic dentistry for a long time. Among them, the latter materials corrode 

easily. This limits their application despite their sometimes attractive mechanical properties. Because 

of the ,any local as well as general biological effects of corrosion products containing a variety of 

potentially toxic metals, this in vitro corrosion constitutes a major drawback [1]. However, more 

recently regulations and laws  aimed at a reduction of costs in health care have reinvigorated the inter-

est in less expensive alloys. A large number of alloys of the various types named above is currently 
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available [2]. In the absence of any regulatory procedure (according to the knowledge of the authors 

and as confirmed by a recently rekindled public discussion of the perceived lack of oversight for 

“medical products” including these materials in Germany, see also [2]) employed to evaluate in com-

parative studies the stability of these materials against corrosion, studies of this property seemed to be 

desirable. The situation is further complicated by the growing number of materials used in dentistry 

(e.g. cements, adhesives, filling materials) as well as food constituents previously not encountered. In 

addition, processing parameters (method of casting, temperature control during casting) may influence 

corrosion stability. 

We had studied the corrosion stability of a selection of palladium-based and cobalt- and nickel-

based non-precious metal alloys in artificial saliva. Because corrosion of metallic materials in the 

mouth is almost exclusively an electrochemical process [3], we have employed in previousstudies of 

the corrosion of metallic materials used in dentistry an electrochemical method [4 - 14]. Cyclic 

voltammetry (CV) or similar techniques with an electrolyte solution as similar as possible to natural 

saliva proved to be particularly helpful and relatively easy to perform [15 - 18]. 

The experimental results and thus the comparability (and compatibility) between various stud-

ies, unfortunately depend strongly on the experimental conditions, in particular the composition of the 

electrolyte solution [16, 19], the sample pretreatment and the scan rate. The latter parameter has been 

examined in investigations of the corrosion behavior of alloys of semi-precious metals or with low pre-

cious metal content with cyclic voltammetry with widely varying scan rates, results have been re-

viewed elsewhere [20]. Low scan rate CV has been shown to be a method giving results strongly 

correlated with those of other, in particular in vivo, studies of corrosion behavior (see e.g. [21]), 

although the sample under investigation is away from the electrochemical equilibrium, i.e. at the 

spontaneously established rest potential. In the present study, we have used a synthetic saliva solution 

composed of various salts as suggested by Meyer [22]. A very similar solution has been described first 

by Swartz and others [23] and modified later by Fusayama and others [24]; it is now generally known 

as Fusayama saliva. Its properties are similar to those of natural saliva. Ringer's solution (0.8 %wt. 

NaCl, 0.02 %wt. KCl, 0.02wt. % CaCl2, 0.1 %wt. NaHCO3 in water), frequently used in corrosion 

studies, shows an artificially enhanced chloride corrosion (see e.g. [25]). Nevertheless, the corrosion 

products formed in vivo and in Ringer's solution are very similar with those formed at dental amalgams 

[26]; similar comparability studies for other materials and alloys are absent. Engel has reviewed differ-

ences in results and further arguments in favor of Fusayama saliva by [20]. The low scan rate of 1 

mV·s-1 (= 60 mV·min-1) chosen in our earlier studies resulted in long duration of experiments leaving 

this approach somewhat unattractive. In addition, exposure of the samples to electrode potentials 

possibly far away from the electrode potentials commonly encountered in daily use in vivo may result 

in data possibly not characteristic of the corrosion behavior under actual conditions. Inspired by a re-

cently provided review of experimental methods in corrosion research [27], we have reexamined 

selected samples of our previous studies assumed to be representative with electrochemical impedance 

measurements with the aim of relating corrosion susceptibilities derived from breakthrough potential 

EB (corresponding to thermodynamic system properties and not related to breakdown potentials as 

discussed in detail elsewhere [27]), as reported in previous studies with corrosion currents obtained 

from impedance measurements (corresponding to kinetic system properties). 
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Impedance measurements are well established in corrosion research [27 - 30]. Compared to 

slow scan voltammetry aimed at determining breakthrough potentials EB or to get Tafel plots, they 

have a major advantage: They are executed at the open circuit potential with the system in 

electrochemical equilibrium. Nevertheless they have been employed in studies of metallic materials in 

dentistry only infrequently: Cailean and others [31] have examined one Co-Cr and one Ni-Cr alloy in 

contact with a 3 %wt. NaCl solution (see also for results obtained with Rondelli saliva [32]). Results 

indicate growing layer of passivation products, corrosion rates were not reported. Mareci and others 

studied the corrosion behavior of five nickel-based alloys in acidified Fusayama saliva [33]. Poor 

stability was found. Results related to further non-precious metal alloys have been reported elsewhere 

by Mareci and others [34]. In a study of three non-precious metal alloys, increased corrosion was ob-

served in acidified and in fluoridated artificial saliva [35]. Corrosion enhancing effects of various 

bleaching agents on alloys of the WIRON family has been studied by Ameer and others [36]. 

Localized corrosion of nickel-based alloys in acidified artificial saliva has been studied by Mareci and 

others [33]. Details of alloy composition on corrosion susceptibility were found. Saji and Choe have 

observed no influence of casting procedure and consequent differences in microstructure of Co-Cr and 

Ni-Cr alloys on their corrosion behavior [37, 38]; this agrees with earlier observations with palladium-

base alloys [4, 5]. Sufficient corrosion stability of Ni-Cr alloys for practical applications with only 

small variations between the examined products has been noticed with impedance measurements by 

Liliana and others [39]. Mareci and others have compared Ag-Pd and Co-Cr alloys [40]. Liu and Duh 

reported on impedance investigations of TiAlN films on nickel-base alloys [41]. The corrosion of 

copper-based alloys in various modified artificial salivas has been examined [42]. Impedance 

measurements have been applied together with open-circuit potential measurements in corrosion 

studies of selected amalgams [43]. 

Mueller and Hirthe have examined a silver-palladium alloy with impedance measurements 

[44]. Three palladium-base alloys have been examined with various electrochemical techniques [45, 

46]. The similarity of the obtained corrosion data was attributed to the high palladium content. 

Advantageous effects of a small titanium addition to a silver-palladium alloy in various artificial 

salivas have been reported [47]. 

In this study, we have examined a set of representative alloys already studied before with slow 

scan CV with electrochemical impedance measurements to verify comparability of data and rankings 

of corrosion susceptibility. 

 

 

2. EXPERIMENTAL 

Taking into account the results of an earlier study (see Fig. 3 below) we have selected 

representative palladium-base and non-precious metal alloys already investigated with slow scan cyclic 

voltammetry before [4 - 578914, 48]. Their actual composition as reported in Table 1 was determined 

using electron beam microanalysis EPXMA (CAMECA SX 100). 

The alloys were cast into samples of various shapes including cylindrical rods for 

electrochemical studies (length 40 mm, diameter 5 mm) using casting procedures discussed elsewhere 
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[4, 5] and identified as having only insignificant influence on the corrosion behavior. Non-precious 

metal alloys were casted using centrifugal casting with protective gas blanket after melting in an open 

flame and vacuum pressure die casting with protective gas after melting in a resistance-heated furnace 

under inert gas, for palladium-base alloys in addition centrifugal casting after melting in an induction 

furnace (high frequency heating) and vacuum pressure casting after melting in a resistance-heated 

furnace were employed. 

Before electrochemical measurements, the samples were polished with abrasive paper (wet pa-

per, type 240, 320, 400 and 600), cleaned in an ultrasonic bath and rinsed with acetone and ultrapure 

18 MΩ water (Seralpur Pro 90 C). Subsequently they were connected to a sample holder fitted with a 

tapered joint. A conventional electrochemical H-cell with a corresponding tapered joint and cell 

compartments for a platinum sheet counter electrode and a saturated calomel electrode (SCE) acting as 

a reference electrode separated from the main compartment by glass frits was used; for further details 

see [4, 5]. 

 

Table 1. Composition of studied alloys1 (Mass percent/%, data provided by manufacturers for com-

parison) 

 

Palladium-base alloys 

alloy Pd Ag Cu Pt Sn In Fe 

Pd1 57.8 30.0 - - 6.0 4.0 - 

P2 56.5 25.6 6,2 - 3.2 12.1 - 

Pd3 57.2 34.5 - 6.7 - 1.4 4.7 

Non-precious metal alloys 

alloy Ni Cr Mo Si - Ce  

Ni1 57.1 23.8 12.6 2.1 - 0.13 - 

by manufacturer 61 26 11 1.5 - - - 

 Co Cr Mo Si W Ce  

Co1 61.8 22.8 8.2 1.1 4.5 0.1 - 

by manufacturer 61 25 7 1.5 5 - - 

 Co Cr Mo Si Fe Mn  

Co2 33 30.5 5.2 1.1 29.6 0.4 - 

by manufacturer 33 30 5 1 29 1.5 - 

 

A Fusayama synthetic saliva containing 0.4 g KCl, 0.4 g NaCl, 0.69 g NaH2PO4·H2O, 0.005 g 

Na2S·9H2O, 0.795 g CaCl2·H2O and 1 g urea per dm3 dissolved in 18 MΩ water was used as elec-

trolyte solution; its pH was 4.7 - 5.00. All chemicals were of analytical purity, they were used as 

received. The solution was saturated with pressurized air filtered with activated carbon. The cell was 

immersed in a water bath kept at 37 °C. The solution was saturated with pressurized air instead of 

nitrogen or argon before every measurement in order to keep the composition of the electrolyte 

solution as similar as possible to the in vivo situation. 

Electrochemical impedance measurements were performed on a potentiostat IVIUMSTAT 

Electrochemical Interface in the frequency range 100 kHz to 10 mHz, with 5 data points per frequency 

                                                 
1 Alloy tradenames and manufacturer’s names withheld on publishers request. 
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decade at sine wave amplitude of 10mV. Measurements were repeated five times per sample. For data 

handling, in particular for fitting of the obtained impedance data, software Zsimpwin was used. A 

Randles-type circuit (Fig. 1) was assumed as has been reported elsewhere for similar materials [45] 

with a constant phase element Q instead of a simple double layer capacitance. 

Figure 1. Equivalent circuit used in impedance measurements. 

 

 

 

3. RESULTS AND DISCUSSION 

Measurement of the spontaneously established open circuit potential (OCP), i.e. the corrosion 

potential, did not yield useful data in case of the palladium-based alloys [2, 5, 40, 49]. The presumably 

very low anodic current of the rather noble alloy naturally limited the cathodic current due to dioxygen 

reduction; these very small currents resulted in slow establishment of any potential.  

 

Figure 2. Results of impedance measurements; symbols: measured data points, lines: result of fit and 

simulation. 

 

Presumably rapid formation of surface layers and poorly defined conditions at the 

metal/solution interface further contributed to a significant electrode potential drift resulting in 
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meaningless data. OCP measurements over extended periods of time as reported elsewhere [40, 49] 

were not attempted. Impedance measurements were instead started soon after sample immersion after 

the potential fluctuations immediately after immersion had abated. To examine reproducibility the 

sequence abrasive treatment – cleaning – immersion – impedance measurement was performed five 

times with every sample. Results are displayed in Fig. 2. 

 

Figure 3. Breakthrough potentials of alloys studied in artificial saliva [13]. 

 

 

Figure 4. Rct values of alloys studied in this work, red bars indicate range of breakthrough potential EB 

of palladium-base alloys from [48] not published before. 
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ported elsewhere are shown in Fig. 3 for comparison. Palladium-base alloys (Pd-Co, Pd-Ag, Pd-Cu), 

some older cobalt-chromium (Co-Cr) and nickel-chromium (Ni-Cr) and the currently used non-

precious metal alloys (Cobalt-base and Nickel-base) studied here are included. The displayed bars 

show the range between the lowest and the highest value of recorded breakthrough potentials. No 

statistical data treatment was applied. 

Fig. 4 shows the obtained values of charge transfer resistance Rct, they correspond to the rate of 

corrosion with smaller resistances indicating faster corrosion. A direct transformation of Rct into jcorr is 

possible according to 


=

  
corr

ct

R T
j

n F A R
 (1) 

with electrode surface area A and the other symbols with common meaning. Because of the 

presence of several metals in all alloys with possible different stoichiometries of their respective 

corrosion reactions identification of the number of transferred electrons, n remains ambiguous; we 

have refrained from doing it. Error bars display results after applying the common “trimmed means” 

procedure. 

A comparison of Fig. 4 with data from the preceding Fig. 3 shows values of EB of palladium-

silver alloys closely relate with those of the single palladium-silver alloy previously studied [4, 5]. The 

impedance data closely correspond to those reported before by other researchers with three typical 

high-palladium alloys [45]. They suggest the following conclusions: Nickel-base alloy Ni1 shows the 

lowest values of Rct and of EB, respective values for the cobalt-base alloy Co1 are higher. Rct of the 

iron-containing alloy Co2 is only slightly better than that of Co1, whereas values of EB suggested a 

larger difference. 

The close agreement of the values of EB for palladium-silver alloy does not completely corre-

late with the impedance results. Alloy Pd3 shows a significantly higher Rct implying a much larger 

corrosion resistance. In the absence of results obtained with other methods, this discrepancy cannot be 

explained. Mueller and Hirthe examined only one palladium silver alloy with linear potential scan and 

impedance experiments but did not compare the corrosion rates [44]. Vasilescu and others condensed 

their comparison of data from various methods into “good corrosion stability” [50]. 

As indicated above, impedance measurements performed in vitro under spontaneously estab-

lished electrochemical conditions without forcing possibly unrealistically high electrode potentials as 

in slow scan cyclic voltammetry on the electrode may provide more realistic corrosion susceptibility 

information. This should apply to all materials; the discrepancy observed here cannot be explained 

currently. 

 

 

 

4. CONCLUSIONS 

Electrochemical impedance measurements performed with selected palladium-base alloys and 

non-precious metal alloys yielded results that confirm the very few previously reported data on these 

materials, showing similar relative rankings of corrosion susceptibility, as previously reported 

measurements of breakthrough potentials with much shorter experiment durations. 
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