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Battery modelling and state estimation are crucial for lithium-ion batteries applied in electrical vehicles 

(EVs). In this work, a simplified electrode-average electrochemical model of a lithium-ion battery that 

adopts a polynomial approximation and a three-variable method to reduce the order of the solid and 

electrolyte phase diffusion equations is designed. A novel parameter identification method considering 

temperature and current is also proposed to reduce the parameter deviation caused by different working 

conditions. The model parameters are identified by the genetic algorithm (GA) offline at different 

temperatures and currents to create lookup tables for online estimation. Furthermore, 3.5 Ah NCM 

18650-type cells are chosen to validate the simplified model and the proposed estimation method. The 

results indicate that the proposed scheme is accurate, simple and flexible for current and temperature 

changes under different operation conditions. 
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current uncertainties 

 

 

1. INTRODUCTION 

Electric vehicles, including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles 

(PHEVs) and pure electric vehicles (PEVs), have been widely developed due to the explosion of the 

energy crisis and global warming. Recently, compared with other batteries, lithium-ion batteries (LIBs) 

have been widely utilized not only for their high density, high power density, long cycle life and 

environmental friendliness [1] but also for their low self-discharge rate and lack of a memory effect [2]. 

http://www.electrochemsci.org/
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Reliability and safety issues coupled with the abovementioned advantages are challenging and crucial 

for LIBs, especially under extreme conditions. To address this problem, a battery management system 

(BMS) was proposed to monitor and protect the battery, which can not only prevent it from over-

charge/discharge and explosion under extreme temperature but also optimize battery performance, 

extend cycle life and increase driving range. In the design of a BMS, the cell voltage and the operating 

states efficiently estimated are key issues. The battery states, including state of charge (SOC), state of 

health (SOH) and state of function (SOF), cannot be directly evaluated [1]. Accordingly, various battery 

models are employed to estimate these operating states, which are closely dependent on the related 

battery parameters. Thus, model parameter identification is indispensable and critical for BMS design. 

A considerable number of researchers have investigated battery models and presented numerous 

effective methods for parameter identification. The models of LIBs mainly cover equivalent circuit 

models (ECMs) and electrochemical models [3]. Electrochemical models are able to describe the internal 

reactions of batteries, including intercalation/deintercalation of Li+ in electrode materials via three 

transport phenomena (migration, diffusion and convection). Convention is normally neglected in battery 

modelling due to its weak effect [4]. Two of the most widely used and studied electrochemical models 

are the pseudo-two-dimensional (P2D) model and the single particle model (SPM). The P2D model is 

described by several highly nonlinear partial differential equations (PDEs) based on porous electrode 

theory, concentrated solution theory and kinetics equations [5, 6]. There are different simplified versions 

of the P2D model due to its complexity, such as the parabolic profile approximation model [7], electrode 

averaged model (EAM) [8] and proper orthogonal decomposition (POD) model [9]. The SPM was 

proposed by approximating both positive and negative electrodes as two spherical particles and 

neglecting the concentration of Li+ in the liquid phase, which greatly improves the calculation speed of 

the model and offers good accuracy at a low current rate. In our previous work, an extended single-

particle (ESP) electrochemical model was established based on the SPM by considering the influence of 

the electrolyte phase potential on the battery terminal voltage, which improves the accuracy of the SPM 

under high-magnification-current conditions [10]. Generally, the more the model is simplified, the less 

computational time it needs, but the lower its accuracy is. Compared with the equivalent circuit models, 

the electrochemical models are more accurate and can capture important dynamics, including solid-

phase diffusion, at the expense of computational resources, but they are more sophisticated and 

unsuitable for online applications. Thus, it is crucial to balance model fidelity and computational burden 

to satisfy different application requirements. 

Furthermore, the accuracy of the model used is closely related to parameter identification. 

Currently, researchers have suggested many effective methods to improve the accuracy of parameter 

identification, such as various Kalman filters methods, least-squares methods and evolutionary 

computation technology. In general, the electrical parameters depend on several variables, including 

temperature, SOC, current and ageing [11, 12]. Yuan et al. utilized the recursive least-squares algorithm 

to estimate simplified electrochemical model parameters by establishing the parameter relationship 

between an equivalent circuit model and a simplified electrochemical model [13]. The new method 

improves the comprehension level of the two models. Shen et al. [14] proposed a particle swarm 

optimization and Levenberg-Marquardt (PSO-LM) algorithm to realize the multi-scale parameter 

identification of LIBs, which accelerates the convergence rate and resolves the local minimum 
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entrapment drawback but increases the computational cost. Compared with the abovementioned 

methods, the genetic algorithm (GA) [15], as a parameter identification method, is frequently used to 

identify nondestructive parameters because of its flexibility for different objective functions, excellent 

optimization performance even with unknown initial parameters and good algorithm convergence. 

However, the algorithm’s drawbacks limit its application, including long computational processes and 

repeated calculations [16]. To tackle this problem, the simplified model parameters are estimated by the 

GA offline and change with the current and temperature for application in BMS and embedded systems. 

In this work, a simplified electrode-average model with a solid-phase diffusion equation reduced 

by polynomial approximation and a three-variable method is proposed, which not only captures the 

dynamic behaviour of the battery but also simplifies the physics-based equations expressing 

concentration transport and conservation of charge for the solid and electrolyte phases to reduce the 

model’s complexity. Furthermore, a novel parameter estimation method is developed, in which the 

nonlinear model parameters are identified by the GA offline from measured data directly, then applied 

to lookup tables and varied with real-time current and outside temperature. The simplified model with 

estimated parameters applied can simulate battery behaviours under different operation conditions 

steadily and efficiently. To validate the simplified model and the proposed estimation method, 3.5 Ah 

NCM 18650-type cells are selected. The experiments include constant current discharge tests and two 

self-designed pulse current tests. 

 

 

 

2. MODEL DEVELOPMENT 

2.1. Model simplification 

2.1.1. Electrochemical mechanism 

The electrochemical model of LIBs based on chemical/electrochemical kinetics and transport 

equations is utilized to simulate the electrochemical phenomena and characteristics.  

 
Figure 1. Schematic diagram of the P2D model of the lithium-ion battery. 
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Figure 1 is a schematic diagram of the lithium-ion battery model, which consists of a positive 

electrode, a negative electrode, a separator and an electrolyte, and the two dimensions are the radial 

dimension in the porous spherical particles and the dimension x along the thickness. The cathode 

material (NCM) and anode material (graphite) are smeared on aluminium (Al) and copper (Cu) foil 

current collectors, respectively. During discharge, the Li+ de-intercalating from the anode passes through 

the separator and intercalates into the cathode. The opposite process occurs during charge. 

 

2.1.2. Electrode average model simplification 

The electrode-average model proposed by Domenico et al. [8] couples multiple partial 

differential equations (PDEs) to describe the internal electrochemical reactions of LIBs in detail. The 

average model is based on two assumptions: the concentration of Li+ in the electrolyte is constant, and 

the solid concentration distribution along the electrode is negligible. To satisfy the embedded control 

system and estimation application, the simplified model loses partial information pertaining to LIBs, but 

it can reduce computational complexity and capture crucial dynamic characteristics. The governing 

equations and boundary conditions are introduced briefly as follows. 

The concentration of Li+ in solid-phase particles is described by Fick’s diffusion law: 
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The concentration of charge in the solid phase of the two electrodes is governed by Ohm’s law: 
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The corresponding boundary conditions are as follows: 
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The concentration of charge in the electrolyte is 

     
,0

, , , 0
     

            

eff

eff D
e e

e

K
K x t C x t j x t

x x x C x
 

(

7) 

 0 ln2
1 1

ln




 
   

 

eff eff

D

e

d fRT
K K t

F d C
 (

8) 



Int. J. Electrochem. Sci., Vol. 14, 2019 

 

4128 

where the effective electrolyte conductivity , 1.5eff brug

eK K brug  , with the following boundary 

conditions: 
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The electrochemical reaction kinetics are described by the Butler-Volmer equation: 
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A constant value j  is used to replace Butler-Volmer current j because of the average solid 

concentration. Equation (12) is derived from integrating equation (4) with the boundary conditions (5) 

and (6) applied. 
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The Butler-Volmer current of the negative and positive electrodes are 
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The potential caused by electrolyte phase impedance is considered, and the influence of the 

concentration of Li+ in the electrolyte is neglected. Combining equations (7) – (9), the electrolyte phase 

potential difference is 
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To obtain the overpotential, the Butler-Volmer equation can be rewritten as 
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The concentration of Li+ in the solid phase is governed by Fick’s diffusion law, and the curve of 

the surface concentration of Li+ in spherical particles resembles a parabola during charge and discharge, 

as shown in Figure 1. To simplify equation (1) and realize model reduction, the polynomial 

approximation and a three-variable model suggested by Thanh-Son Dao et al. [17] are chosen. 

The concentration of Li+ in the solid phase can be expressed as 
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Three coefficients are obtained by substituting equation (18) into equation (1) considering the 

surface concentration of Li+ in the solid phase  ,s surfC t , the average concentration of Li+ in the solid phase 
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 sC t  and the volume-averaged concentration flux  q t  (for the detailed solution, see Subramanian et al. 

[18]). 
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Equation (1) can be reduced to the following two ordinary differential equations (ODEs) by 

substituting equations (19)-(20) into equation (18). 
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where the wall flux of Li+ on an intercalation particle of the electrode is  
 

t 
s
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J

a F
. 

An average model reduced with a three-variable approximation applied in the solid phase is 

realized, and the cell output voltage is described as 
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In equation (24), 
pU and 

nU  are the open-circuit voltages (OCVs) of the positive and negative 

electrodes, respectively. The positive equilibrium 
pU  is formulated as in reference [19], whose cathode 

material NCM is the same as that in the test cell. 
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25) 

The negative equilibrium 
nU  is obtained by curve fitting. 
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where the electrode-level state of charge θ𝑖 is defined as follows: 
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The simplified average model is programmed and simulated in the MATLAB/SIMULINK 

platform, and the next step is to estimate the related model parameters. 

 

2.2. Parameter identification 

2.2.1. Electrochemical model parameters 

The electrochemical model describes complex internal electrochemical reactions of LIBs and has 

numerous parameters, which are difficult to estimate by experimental measurement directly. Table 1 
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shows most of the model parameters of the 3.5 Ah 18650-type NCM cells that we chose. The cell 

structure parameters are derived from reference [19], such as the thickness and particle radius. The other 

parameters are adopted from references [20-22]. Otherwise, seven model parameters (Ds,n, Ds,p, εe,n，

εe,p, εe,s, εs,n and εs,p) are identified by the GA with temperature and  current changes considered because 

these parameters usually change with cell type and are closely associated with battery characteristics. 

 

 

Table 1. Parameters for the electrochemical model of the LIBs 

 

Parameters Negative electrode Separator Positive electrode 

L/cm 38.1 10  32 10  37.8 10  

Rs/cm 31 10  - 45 10  

0   0.126 - 0.870 

100  0.676 - 0.442 

,s maxC /(mol·cm-3) 0.0306 - 0.0516 

k/(A·cm2.5·mol-1.5)  119.6487 10  - 112.89461 10  

eC /mol·cm-3) 31.2 10  

R/(J·mol-1) 8.314 

K/(S·cm) 
3 6 2 9 30.0911 1.9101 10 1.052 10 0.1554 10       e e eC C C  

F/(C·mol-1) 96485 

Rf/Ω
  

0.028 

A/m2 0.2 
 a c

 0.5 

 

2.2.2. Offline and online estimation 

The effects of temperature and current are considered because they are closely related to battery 

characteristics and change with the external environment and driving conditions. Figure 2 shows the 

temperature rise of 3.5 Ah NCM 18650-type cells in a programmable fast thermal test chamber set to 

20C at a current of 0.2, 0.5, 1 and 2C, respectively. The test details are introduced in the first paragraph 

of section 3.1. Experimental verification, and their maximal temperature increases are exhibited in Table 

2. As shown in Figure 2, the temperature rise of the cell increases as the current increases, especially at 

the end of discharge. The temperature rises gently and slightly below the 1C discharge current rate but 

rapidly and drastically above 2C, for which the maximal temperature rise reaches 14.8C at 2C. 

Therefore, parameter identification involves two processes: utilizing 2-D lookup tables to estimate 

parameters online for discharge current rates below 1C based on the prepared parameters identified by 

GA, and applying the GA to estimate parameters directly for high current with increasing temperature. 

Compared with a coupled electrochemical-thermal model that can also describe the temperature effect, 

the proposed method based on the simplified model is less complex, incurs a lower computational cost 

and is more suitable for online applications. 
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Figure 2. Temperature increases of cells at different current rates of 0.2, 0.5, 1 and 2C. 

 

 

Table 2. Maximal temperature increase of cells under different current rates. 

 

Current rate 0.2 0.5 1 2 

Rise (C) 0.9 2.4 5.6 14.8 

 

The GA is a global optimization probabilistic search algorithm modelled after natural evolution. 

During each evolution process, new individuals are generated by fitness-proportionate selection, and 

randomly selected crossover and mutation operations are applied to the genes of individuals [22]. The 

GA was applied to estimate the seven unknown parameters offline with the temperature and current 

considered; the corresponding flow chart is shown in Figure 3. Each GA individual includes 7 variables: 

Ds,n, Ds,p, εe,n，εe,p, εe,s, εs,n. and εs,p respectively. Table 3 shows the value ranges of the seven parameters. 

The population size, number of genetic iterations, crossover probability Pc and mutation probability Pm 

in the GA are set to 50, 100, 0.6 and 0.007, respectively. Furthermore, the following fitness function 

(28) of individuals is the sum of the squares of the output voltage errors between the simplified model 

and tested cells. The GA process is repeated at each temperature (10C, 20C, 30C and 40C) and each 

discharge current rate (0.2C, 0.5C, 1C and 2C) based on the collected experimental data, and the 

estimated results are listed in Table 4. From Figure 2, the temperature rise of 1C is below 3C when the 

SOC is as low as 0.2; therefore, the estimated results of discharge current rate (<1C) at different 

temperatures can be considered the true values of the corresponding temperature and prepared for lookup 

tables. However, the parameters associated with a discharge current rate of 2C should be estimated by 

the GA directly offline at different temperatures because of the drastic increase in temperature. 

 
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Table 3. Value ranges of the parameters 

 

,s nD  
,s pD  

, e n
 

,e p
 

, e s
 

, s n
 

, s p
 

12 91 10 ~1 10    12 91 10 ~1 10    0~0.9 0~0.9 0~0.9 0~0.9 0~0.9 

 

 

 
 

Figure 3. The flow diagram of the GA for offline parameter identification. 

 

Table 4. Estimated model parameters related to discharge current rate and temperature. 

 

Current 

rate 

Temperatur

e 

/C 
,s nD  

,s pD  
, e n

 
,e p

 
, e s

 
, s n

 
, s p

 

0.2C 

10 101.6436 10  111.8022 10  0.035027 0.035027 0.035027 0.37529 0.27293 

20 113.9277 10  111.0334 10  0.20493 0.20493 0.20493 0.4052 0.29265 

30 111.842 10  111.4263 10  0.89367 0.89367 0.89367 0.46286 0.30718 

40 112.735 10  114.0012 10  0.89936 0.89936 0.89936 0.42979 0.28462 

0.5C 

10 101.0762 10  114.5105 10  0.037796 0.037796 0.037796 0.38256 0.26876 

20 115.5322 10  113.3813 10  0.055918 0.055918 0.055918 0.43362 0.28891 

30 114.5222 10  114.2143 10  0.088903 0.088903 0.088903 0.45054 0.29052 

40 113.9448 10  114.267 10  0.1512 0.1512 0.1512 0.46315 0.29245 

1C 

10 102.2327 10  109.9984 10  0.039019 0.039019 0.039019 0.37125 0.27957 

20 101.7845 10  121.0226 10  0.072594 0.072594 0.072594 0.40594 0.66471 

30 117.1675 10  109.8954 10  0.069648 0.069648 0.069648 0.46713 0.27768 

40 115.4504 10  102.038 10  0.094308 0.094308 0.094308 0.4983 0.28369 

2C 

10 104.4473 10  109.9995 10  0.048197 0.048197 0.048197 0.38235 0.29589 

20 112.7963 10  109.6593 10  0.043899 0.043899 0.043899 0.66623 0.30304 

30 115.4083 10  109.9942 10  0.078452 0.078452 0.078452 0.59951 0.28355 

40 116.268 10  109.9987 10  0.095161 0.095161 0.095161 0.57771 0.28204 
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A 2-D lookup table based on the results estimated by the GA is utilized to describe the 

relationship between each parameter and the corresponding temperature/ discharge current rate (<1C) to 

realize real-time estimation because of the approach’s accuracy and celerity [23]. Each parameter of the 

model is a function of temperature T and discharge current rate C. 

 ,n ,n ,s sD D T C   

 ,p ,p ,s sD D T C   

 , , , e n e n T C   

 , , ,   e p e p T C   

 , ,  , e s e s T C   

 , ,  ,   s n s n T C   

 , ,  , s p s p T C   

Each parameter is described by a 2-D lookup table (3 current breakpoints *4 temperature 

breakpoints) with discharge current rate and temperature as inputs, and the model parameter is the output. 

Internally, each parameter is evaluated by a linear interpolation method according to two inputs. The 

fidelity of the model can be improved by increasing the number of points related to discharge current 

rate and temperature, but introducing more breakpoints can also create two problems. First, introducing 

more points can increase the computational cost. Second, the benefit of introducing more points is 

diminishing, and an excessive number of breakpoints may generate numerous parameter values that are 

not consistent with the optimal solutions [24]. 

 

2.3. Sensitivity analysis of model parameters 

Sensitivity analysis involves local and global sensitivity analysis. In this paper, to remove the 

redundant parameters and adjust the model, local sensitivity analysis is employed, and the coupled 

effects of two parameters are not considered. The output voltage curves, which replace the sensitivity 

factor, are adopted to describe the parameter sensitivity because a slight change in the seven 

characteristic parameters may greatly influence the output. In local sensitivity analysis, the specific input 

parameter is changed slightly around the nominal value, and the responses of the model output are 

compared [25]. 
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Figure 4. Sensitivity analysis of model parameters (a) 
,e n , (b) 

,e p , (c) 
,e s , (d) 

,s nD , (e) 
,s pD , (f) 

,s n , and 

(g) 
,s p . 
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Figure 4a-c shows the sensitivity analysis curves of εe,n, εe,p and εe,s separately, and their input 

parameters are all varied with a fixed step size of 0.2. Even when the input parameter is sharply decreased 

to 0.04, the output curves are all anastomotic, which indicates that the three parameters are insensitive. 

The sensitivity analysis curves of Ds,n and Ds,p are shown in Figure 4d and e. The input values are set to 

1.0e-11, 1.0e-10 and 1.0e-9 separately because of the broad value range relative to the order of 

magnitude. Figure 4f-g shows the sensitivity analysis curves of εs,n and εs,p. Their fixed step sizes are 0.1 

and 0.05, respectively. As shown in Figure 4d-g, the output curves vary greatly, especially at the end of 

discharge, which demonstrates that the four parameters are sensitive parameters and that slight changes 

in their values can greatly influence the model’s fidelity. Therefore,  εe,s is selected from three insensitive 

parameters and assigned an optimal value of 0.30446, which is identified by GA at 25C. 

 

 
 

Figure 5. Fitting surfaces of the model parameters (a)
,s nD , (b)

,s pD , (c)
,e n , (d) 

,e p , (e) 
,s n , and (f) 

,s p . 

 

The relationships between the other model parameters, temperature and current are illustrated in 

Figure 5. In the negative electrode,  Ds,n (Figure 5a) and εs,n (Figure 5e) both increase with increasing 

temperature, but only Ds,n increases appreciably with increasing current. In the positive electrode, the 

dependence of Ds,p (Figure 5b) and εs,p (Figure 5f) on temperature and current is distinct when the current 

increases, showing an irregular shape with temperature. In the electrolyte phase, εe,n (Figure 5c) and εe,p 

(Figure 5d) show a similar dependence on temperature and current. The sensitivity analysis can not only 

decrease the number of 2-D lookup tables required and maintain model precision but also benefit the 

subsequent model calibration. 
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3. RESULTS AND DISCUSSION 

3.1. Experimental verification 

In this paper, 3.5 Ah NCM 18650-type cells are chosen to validate the simplified model and the 

proposed estimation method. The experiments include constant current discharge tests and two self-

designed pulse current tests. A host computer for profile setting and date storage, a battery testing system 

(Shenzhen Neware Technology CO., LTD), a programmable fast thermal test chamber (MSK-TE906, 

Shengzhen Kejing Star Technology CO., LTD) and temperature sensors attached to the cells are shown 

in Figure 6. The cells are charged to 4.2 V by the standard constant-current constant-voltage (CCCV) 

scheme according to the manufacturer’s guidelines and discharged to 2.5 V at different current rates 

(0.2C, 0.5C, 1C and 2C) and temperatures (10C, 20C, 30C and 40C). The self-designed pulse current 

tests include two sections, and the current profiles are shown in Figure 7a and b, respectively. One is the 

1C pulse discharge test, which is implemented over the range of 20%-90% SOC in steps of 10%. To 

validate the adaptation of the proposed method to different charge/discharge current rates, the other is a 

4-step pulsed-current test applied with a current rate of 0.2C, 0.5C, 1C and 2C. For the two pulse 

discharges, the temperature increase is minute and ignored because the pulse time is too short relative to 

the rest time. In the figures, a positive current indicates discharge, and a negative current indicates 

charge. 

 

 
 

Figure 6. (a) The host computer, (b) the battery testing system, (c) the programmable fast thermal test 

chamber, and (d) temperature sensors. 
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Figure 7. Current profiles of (a) 1C pulse discharge and (b) 4-step pulsed-current tests. 

 

3.2. Algorithm validation 

To verify the accuracy of the parameter identification algorithm and analyse the simplified model 

stability to various temperature and current effects, a comparison of the experimental and simulated 

terminal voltages under different temperatures and discharge rates is shown in Figure 8. Figure 8a and b 

describes the battery terminal voltage curves at different temperatures with a current of 0.2C and the 

corresponding relative error between experiment and simulation separately. The experimental and 

simulated curves almost overlap, and the voltage relative errors are essentially within 0.5%. The error at 

25C is slightly larger than the errors at other temperatures because the model parameters at 10, 20, 30 

and 40C are identified by the GA as breakpoints in 2-D lookup tables, but the parameters at 25C are 

estimated by linear interpolation method through 2-D lookup tables. Clearly, the error is also 

approximately 0.5%, except at the end of discharge at 25 °C; fortunately, however, the vehicle batteries 

mainly operate in the middle of the SOC, which indicates that the proposed method has high fidelity and 

strong robustness to temperature change. 

Moreover, Figure 8c and d shows the battery voltage curves and relative error under various 

discharge rates at 20C. The figure illustrates that the simulated terminal voltages show excellent 

agreement with the experimental voltages. When the current is below 2C, the error is less than 0.5%, 

and when the current is up to 2C, the error still remains approximately 0.5%. Thus, the efficient but 

inexpensive parameter identification algorithm with 2-D lookup tables exhibits excellent performance 

under varying temperature and current conditions. 
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Figure 8. Comparison of experimental data and simulation results under the effects of different 

temperatures at 10, 20, 30 and 40C (0.2C) (a). Relative error of temperature effect at different 

temperature (b) and discharge current rates 0.2, 0.5, 1 and 2C (20C) (c). Relative error of current 

effect (d). (  



exp sim

exp

U U
Relative Error

U
 , the solid line is the experimental curve and the dashed line 

is the simulated curve). 

 

3.3. Model validation 

To verify the extracted electrochemical model with the estimated parameters, three different load 

profiles are implemented, including 1C discharge, 1C pulse discharge and four-step pulse discharge. The 

1C discharge voltage curve at 20C is shown in Figure 8d with a voltage error of 0~0.056 V, a relative 

voltage error of 0~0.7% and an average relative error of 0.2%. The corresponding simulation results and 

experimental data pertaining to 1C pulse discharge and four-step pulse discharge are shown in Figure 9. 

The simulated curve of 1C pulse discharge, which follows the experimental curve closely, increases 

along a straight line and then rises slowly during the rest of the period, which indicates that the simplified 

model simulates the voltage resilience characteristics of the battery very well. Considering Figure 8b, d 

and Figure 9a, it is noteworthy that the maximum estimated error appears at the end of discharge (~0.25 
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SOC), generally because the battery exhibits strong nonlinear characteristics at extreme SOC 

universally. There is good agreement between the simulated and actual charge/discharge voltages for 4 

different current rates (Figure 9b), which demonstrates the excellent flexibility of the proposed model 

with changes in charge/discharge current rates. 

 

Table 5. Cell voltage absolute error and simulation runtime of the three load profiles. 

 

Load profile 

 (20C) 

Average error 

voltage 

(mV) 

Maximal 

error voltage 

(mV) 

Average relative 

error 

(%) 

Runtime 

(s) 

1C discharge 11 56 0.2 0.803 

1C pulse 

discharge 

32 60 0.8 1.0 

4-step pulse test 9 64 0.2 0.717 

 

The voltage errors and simulation runtimes of the three load profiles are indicated in Table 5. 

The maximum voltage absolute errors for the 1C discharge, 1C pulse discharge and 4-step pulse tests 

are all below 65 mV, and the average relative errors are 0.2%, 0.8% and 0.2%, respectively. The 

simulation runtimes of the three load profiles are 0.803, 1.0 and 0.717 s, respectively, which are 

remarkably short and verify the simplicity and practicality of the simplified model. 

The terminal voltage errors between the simulated and experimental results can be considered as 

the evaluation criteria for validation. Relevant studies are listed in Table 6. Parameter estimation based 

on lithium-ion battery models can be divided into three types: electrochemical model-based (including 

the work in this paper) [28-33], equivalent circuit model-based [34-37] and electrochemical/electro-

thermal model-based [16, 26-27]. For the electrochemical/electro-thermal model, as shown in Table 6, 

temperature effects are incorporated into the parameter estimation process but the effect of current is 

ignored [16, 26-27]. In addition, electrochemical/electro models are coupled with a thermal model, 

which is quite time-consuming and complicated. Compared with the ECMs, our work shows a higher 

accuracy than that reported in most papers [34-37] in describing the internal phenomena of lithium-ion 

batteries. Furthermore, compared with other electrochemical models, the model developed in this paper 

considers both temperature and current as variables and estimates the model parameters online with 

changing temperature and current. The parameters reported in most references are identified by specific 

algorithms, except for those reported works [28-30], which are cited entirely. The genetic algorithm is 

widely applied in certain studies [26, 31] to estimate model parameters; however, our work exhibits 

better fidelity. Thus, compared with that reported in other studies, the cell voltage absolute error of the 

proposed method possesses comparatively higher accuracy and considers the effects of changing 

temperature and charge/discharge current rate, which are typically ignored. 
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Table 6. Comparison with reported works at 1C discharge 

 
References Model used Algorithm Voltage error Temperature/current 

dependence 

The paper Electrochemical 

model 

Genetic algorithm 0~0.056 V/0~0.7%/ 

0.2%(average) 

Yes 

16 Electrochemical-

thermal coupling 

model 

Least-squares fit 0~0.07 V Temperature 

26 Multi-physics model Genetic algorithm 0~0.0763 V Temperature 

27 Electrothermal 

model 

Least-squares 

nonlinear algorithm 

0~1% Temperature 

28 SPM - 0~1% Temperature 

29 Simplified P2D - 0~0.4% No 

30 Electrochemical 

model 

- 0.2076% (average) No 

31 Electrochemical 

model 

Genetic algorithm 0~0.1 V No 

32 Electrochemical 

model 

Bacterial foraging 

optimization 

algorithm 

0~0.08 V No 

33 Electrochemical 

model 

Least squares 0~1% current 

34 ECM Least-squares curve 

fitting 

0~1.23%/ 

0.29% (average) 

Yes 

35 ECM with improved 

P2-D model 

Recursive least 

squares 

0~0.06 V No 

36 Splice-ECM Curve fitting 0~2% No 

37 ECM Extend Kalman filter 0.12% (average) No 

 

 
 

Figure 9. Comparison between experimental data and simulation results for (a) 1C pulse discharge and 

(b) four-step pulse tests. 
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In short, the flexible simplified model established by the proposed method is verified to be 

effective in reducing computational cost and maintaining high fidelity. The results are mainly attributed 

to two reasons: one is that the simplified model is greatly reduced with partial internal information loss 

but captures the dynamic characteristics very well, and the other is utilizing the proposed parameter 

identification method to relieve the influence of temperature and current on the model’s performance 

and maintain the strong stability of the model. 

 

 

 

4. CONCLUSION 

In this paper, a simplified electrode-average model reduced using polynomial approximation and 

a three-variable method is proposed, which not only captures the dynamic behaviour of a battery but also 

simplifies the physics-based equations of the solid and electrolyte phases to reduce model complexity. 

A practical method is developed for identifying the model parameters employing the genetic algorithm 

from observed experimental data to create 2-D lookup tables with temperature and current as 

independent variables for online estimation. The model parameters are estimated directly for large 

discharge current rate, under which the temperature rises sharply during discharge. To validate the 

simplified model and the proposed estimation method, 3.5 Ah NCM 18650-type cells are selected. The 

results suggest that the simple method possesses low complexity, sufficient accuracy and excellent 

adaptability to changes in temperature and current rate. The simplified model combined with the 

proposed parameter identification method updates the parameters with a voltage error of 0~0.056 V, a 

relative voltage error of 0~0.7% and an average relative error of 0.2%. 
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NOMENCLATURE 

 

j Reaction flux at the solid particle surface, [mol cm-1 s-1] 

sC  Concentration of Li+ ions in an electrode particle, [mol cm-3]  

sD  Diffusion coefficient of lithium in an electrode particle, [cm2 s] 

sa  Specific surface area of electrode, [cm-1] 

F Faraday’s constant, [C mol-1] 

 s  Volume fraction of region 
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iR  Radius of solid particles, [cm] 

 eff
 Effective electronic conductivity of solid particles, [S cm-1] 

s
 Solid-phase potential, [V] 

A Electrode plate area, [cm2] 

L  Total cathode-separator-anode thickness, [cm] 

effK  Effective ionic conductivity of the electrolyte phase, [S cm-1] 

eff

DK  Effective ionic diffusional conductivity of the electrolyte phase, [S cm-1] 

 e
 Volume fraction of the electrolyte phase 

eC  Concentration of Li+ ions in the electrolyte phase, [mol cm-3] 

0

t  Lithium ion transference number in the electrolyte 

T Absolute temperature, [K] 

R Universal gas constant 

0i  Exchange current density, [A cm-2] 

k  Intercalation/deintercalation reaction-rate constant of electrode, [A·cm2.5·mol-1.5 ] 

  Overpotential, [V] 

,s maxC  Maximum concentration of Li+ ions in the particle of electrode, [mol cm-3] 

,s surfC  Surface concentration of Li+ ions in the particle of electrode, [mol cm-3] 

fR  Film resistance, [Ω] 

p Positive electrode 

n Negative electrode 

a , c  Anodic and cathodic transfer coefficients 
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