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This study aimed to systematically investigate the heterogeneous microstructures and corrosion 

resistance of the EH36 welded joint fabricated through vertical electro-gas welding (VEGW) at a high 

heat input (about 308 kJ/cm). In addition to the conventional electrochemical measurement techniques, 

the scanning vibrating electrode technique (SVET) was also employed to examine the localized 

corrosion behavior of the welded joint. Our results suggested that, the welded joint consisted of four 

different distinguishable microstructures, which were the coarse-grain heat affected zones, fine-grain 

heat affected zones, incomplete heat affected zone and weld metal zones. Meanwhile, these different 

zones were easily distinguished in the SVET map. Besides, the WM showed positive corrosion 

resistance compared with the other regions, except in the root layer. The highest Rct value (226.6 

Ω·cm2) was obtained in WM of the top layer, and the most negative corrosion resistance appeared in 

BM of the middle layer. Additionally, results of SVET current density distribution map, micro-

hardness and Charpy impact test also confirmed the varying tendency of the heterogeneous 

microstructures of the welded joint. Finally, it was discovered that the corrosion resistance in various 

regions of this VEGW joint was determined by its microstructure and chemical composition. 
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1. INTRODUCTION 

The EH36 grade high-intensity structural steel has been widely used in the fields of marine and 

offshore platforms, especially for those with heavy structural construction that serve in harsh 

environment, which can be ascribed to its high strength, good low temperature impact toughness, and 

excellent weldability [1]. To enhance the productivity of those heavy structures, some single-pass 
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welding technologies with high weld heat input, such as vertical electrogas welding (VEGW), flux 

copper backing welding (FCB), and electroslag welding (ESW), have been extensively utilized to 

replace the traditional multi-pass welding process [2].  

Barbosa et al. [3] noticed that, the reduced number of welding passes often brought high heat 

input, which potentially resulted in the formation of solidification structure with large spacing, giving 

rise to the formation of a heterogeneous and thicker microstructure that finally prejudiced the 

mechanical performance of the weld metal. The above microstructure discontinuities of welded joint 

can be reduced through using the suitable filler metal and welding process. However, such 

heterogeneous microstructures of welded joint can not be eliminated due to its nature characteristic 

together with different resistance to corrosion. Pimenta et al. [4] found that, the weld metal remained 

prone to corrosion even though the most advanced welding technology, such as laser and electron 

beam welding, was used. According to Liu et al. [5], the welding process accelerated the corrosion 

behavior of the high-strength low alloy steel. Such phenomenon is not only related to the metallurgical 

changes, but also to the various residual stresses distributed in the fusion zone and the heat affected 

zone.  

Over the past decade, tremendous studies have been carried out to explore the relationship of 

the microstructure with the mechanical properties of the HSLA welded joint. Nonetheless, seldom 

studies have focused on investigating the correlation of microstructure with the corrosion behavior of 

weld metal. Deen et al. [6] proved that, the presence of acicular ferrite structure in the weld zone of 

low alloy steel weldment deteriorated the corrosion resistance in aerated water and NaCl solution. 

Compared with allotriomorphic and widmanstätten ferrite, the needle-like acicular ferrite is prone to 

form the non-uniform oxide, which restricts the subsequent formation of complete coverage oxide film 

on the weld zone surface. Fattahi et al. [7] confirmed that the corrosion resistance of the weld metal 

decreased as the Ti-based inclusions and acicular ferrite in the microstructure increased. Such finding 

may not only be attributed to the presence of the non-metallic Ti-based inclusions that act as the 

suitable pitting corrosion sites, but also to the increased grain boundaries of the refined acicular ferrite. 

In this study, we attempted to find the correlation of heterogeneous microstructures with the 

corrosion resistance of the EH36 steel welded joint. To this aim, vertical electro-gas welding (VEGW), 

a single-pass weld with less microstructural complexity, was adopted to fabricate the EH36 high-

strength steel weld metal. In addition, metallographic microscopy and scanning electron microscopy 

(SEM) were carried out to illuminate the microstructural evolution of the welded joint in different 

regions. Meanwhile, the scanning vibrating electrode technique (SVET) was also employed to assess 

the localized corrosion behavior of the welded joint. Typically, SVET is a unique “visualizing” 

electrochemical test method, which provides the current density picture of the metal surface under the 

whole corrosion processes, as suggested by Bastos et al. [8] Under the assistance of other 

electrochemical test techniques and modeling tools, the corrosion behavior was quantitatively 

investigated. Hence, the relationship between the complex corrosion resistance of the EH36 steel 

welded joint and its heterogeneous microstructures was examined in this study by the use of this new 

local electrochemical test technique. Our findings would provide certain guidance for the suitable 

VEGW welding process.  
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2. MATERIAL AND EXPERIMENTAL PROCEDURE 

2.1 Material and welding procedure 

Two ship steel EH36 plates with a dimension of 300mm×150mm×40mm were used to fabricate 

the VEGW joint. The detailed components and mechanical properties are listed in Table 1 and Table 2, 

respectively. As shown in Fig.1, the weld groove of the experimental steel formed an angle of 32◦, with 

a gap of 8 mm on the bottom. The schematic diagram of the welding process is described in Fig.2. The 

SC-EG3 wire that was 1.6 mm in diameter was used as the VEGW filler metal. The chemical 

compositions of the welded metal are also listed in Table 1. Notably, the suitable welding parameters 

for this welding experiment were set below, welding current of 400 A, welding voltage of 40 V, 

welding speed of 31.2 mm/min, and heat input of 308 KJ/cm. In addition, the purified carbon dioxide 

was used as the shielding gas at a rate of 16 L/min. 

 

Table 1. Chemical compositions of the base metal and the welded metal 

 

Material C Si Mn Ni Mo Cr V Cu P S Fe 

Base  

metal 
0.08 0.24 1.52 0.33 0.003 0.01 0.033 0.01 0.009 0.001 Bal. 

Welded 

metal 
0.12 0.32 1.69 1.28 0.13 0.12 0.04 0.21 0.011 0.008 Bal. 

 

Table 2 Mechanical properties of the EH36 steel 

 

Yield Strength 

(MPa) 

Tensile Strength 

(MPa) 

Elongation rate 

(%) 

Impact Energy 

(-40°C, J) 

438 510 29 240 

 
 

 

Figure 1 (a) Schematic diagram of the welded groove and (b) Cut mode of the impact test: a. the 

center of the weld metal; b. fusion line; c. 2 mm to the fusion line in the heat affected zone 

 

 

 

 

(a) (b) 
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Figure 2 Schematic diagram of the welding process (a) Cross-section view; (b) Vertical view 

 

 

2.2 Microstructure analysis 

It is well known that, a single-pass welding technique with high weld heat input can generate 

heterogeneous structures not only in HAZ, but also in the VEGW-welded thick steel plate. Therefore, 

different zones of weld joint should be carefully observed by means of optical microscope (OM) and 

SEM.  

 

 
 

Figure 3 Macrograph of the one-pass EH36 steel weldment (Left: Cut mode for the electrochemical 

analyses; Right: Schematic diagram of optical microscopic microstructure test) 

 

In this study, the test joint was first obtained by cutting from the longitudinally welded EH36 

steel, which contained the base metal (BM), heat affected zone (HAZ) and welded metal (WM), as 

observed in Fig.3. Moreover, the optical microscopic microstructures of the joints were tested using 

the DMM-440D optical microscope according to the marks of lines in Fig.3, which started from the 

(a) (b) 
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right side to the middle of the joint. Subsequently, small pieces of the test specimens used for 

electrochemical and microstructure analyses were cut from the left side of the weld joint, also shown in 

Fig.3, which were marked as 1# to 9#.  

 

2.3 Mechanical and corrosion test  

The Vickers microhardness performance on the different surface areas of the weld joint was 

tested using the DHV-1000Z micro Vickers hardness tester. Three sets of measurements were recorded 

according to the lines marked as a, b and c in Fig.4a, under a load of 300 g and a dwell time of 10 s. 

The mechanical properties of the weld joint were examined according to the Germanischer Lloyd 

standard. The cut mode of the impact test specimens is presented in Fig.1b. Besides, the Charpy impact 

tests were carried out at -40 0C, and the dimension of the test specimens was 10mm×10mm×50mm. 

A special three-electrode electrochemical cell that was designed to expose 1 cm2 of the 

working electrode was utilized for the electrochemical measurements. All specimens, as marked as 1# 

to 9#, were then mounted on the bottom of this electrochemical cell as the working electrodes, and the 

center surface was exposed for the electrochemical test. The other two electrodes included a saturated 

calomel electrode reference electrode and a platinum plate auxiliary electrode, respectively. Prior to 

tests, the specimens were mechanically polished using the 400, 600, 800 and 2000 grid sandpaper, 

respectively, then cleaned with distilled water and dried in air. On the other hand, the open circuit 

potential (OCP) and potentiodynamic polarization tests were conducted within the 3.5 wt.% NaCl 

aqueous solution after 30 min of immersion. Meanwhile, the electrochemical impedance spectroscopy 

(EIS) and SVET test began after a 30-min immersion within the 3.5 wt.% NaCl aqueous solution. The 

electrochemical workstation (GAMRY Interface 1010) and the VersaSCAN electrochemical scanning 

system (AMETEK, VersaSCAN) were thereafter employed to examine the above electrochemical 

behaviors. Potentiodynamic curves were recorded at the scanning rate of 1 mV/s from -0.3 V to 0.3 V. 

The EIS measurements were set under the OCP at the frequency of 0.01 Hz~100 KHz, as well as the 

AC drive signal amplitude of 10 mV. SVET test was performed with the sample dimension of 3mm×3 

mm. The Pt-Ir probe was placed above the sample surface, and the height was controlled at between 

100 μm-120 μm using a video camera. The SVET measurements were conducted under the OCP, with 

the vibrating amplitude and vibrating frequency of the micro-probe of 30 μm and 80 Hz, respectively. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Microstructure 

Fig.4 shows the optical microscopic microstructure in different regions of the VEGW samples, 

which consists of BM, ICHAZ, FGHAZ, CGHAZ, FL and WM in different deposited layers, 

respectively. Notably, the microstructural heterogeneity was observed not only in the longitudinal 

direction, but also along the horizontal direction of the joints. According to Fig. 4a, the microstructure 

of BM was comprised of polygonal ferrite (PF) and pearlite (P) banding, and the pearlite banding was 
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distributed uniformly along the rolling direction. As the welding heat input increased from the top to 

the bottom of the joints, the grain size became coarser on the BM bottom. Fig. 4b shows the 

micrographs of the incomplete heat affected zone (ICHAZ). As was observed, the microstructure of 

ICHAZ was heterogeneous, especially in terms of the grain types, and the main microstructure was 

characterized by polygonal ferrite (PF) and pearlite (P). There were more P grains in the middle of the 

ICHAZ, and the ferrite side plate (FSP) was observed on the ICHAZ bottom. As observed from Fig.4c, 

the grain size of the FGHAZ was coarser than that of the ICHAZ. As the optical micrograph of the 

microstructure got closer to the weld metal, the CGHAZ was featured by grain boundary ferrite (GBF), 

acicular ferrite (AF) and Intragranular ferrite (IF). According to Barbosa et al. [3], such microstructural 

features was possibly attributed to the complete austenite dissolution and subsequent growth of ferrite 

grain following heating during the VEGW welding process. Compared with the other welded layers, 

the middle region showed coarser micro-phase both in FGHAZ and CGHAZ, which was caused by the 

different heat inputs of the VEGW technology. This phenomenon was also observed based on the 

widened thickness of CGHAZ adjacent to the fusion line in the middle layer.  

The microstructure of WM was composed of polygonal ferrite (PF), granular bainite (GB), 

ferrite side plate (FSP), martensite (M) and nonmetallic inclusions due to the dissimilar chemical 

compositions of WM. Moreover, the microstructure in the root WM had a higher volume fraction of 

AF, which potentially contributed to decreasing the volume fraction of PF and eventually increased the 

toughness of WM, as suggested by Lee et al. [9]. However, more nonmetallic inclusions were observed 

in the root WM, which might be resulted from the metallurgical reaction between the ceramic backing 

and the WM.  
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Figure 4. Optical micrographs of different zone. (a) Base Metal, BM; (b) Incomplete heat affected 

zone, ICHAZ; (c) Fine grained heat-affected zone,FGHAZ;(d) Coarse grained heat-affected 

zone, CGHAZ; (e) Fuse line, FL; (f) Weld metal, WM of different layers. Note: PF–Polygonal 

ferrite; P–Pearlite; FSP–Ferrite side plate; AF–Acicular Ferrite; GF–Grain Boundary Ferrite; 

IF– Intragranular Ferrite; GB-Granular bainite; B–Bainite; M–Martensite  

 

To investigate the detailed microstructural information about the heterogeneity of the welded 

joint, the specimen SEM micrographs from the fusion line region are presented in Fig 5. Obviously, all 

WM had more fine grain size than that of HAZ, and the root WM was represented by a mixture of 

polygonal ferrite and martensite, with a more uniform distribution of inclusion. As shown in Table.3, 
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the EDS results of the inclusion (marked in Fig.5d) proved that, the inclusions were mainly composed 

of TiO2 and CaO. It was reported by Liu et al. [10] that, the inclusions in the steel matrix might cause 

localized corrosion in the interface region, finally negatively affecting the corrosion resistance of the 

matrix. Moreover, the EDS results of all samples revealed that there were more Cr, Cu, Ni and Mo 

elements in the WM than in the HAZ region, among which, the Cr and Cu elements played key roles in 

improving the corrosion resistance, as reported by Wei et al. [11] and San et al. [12].  

 

  

 

  

  
 

Figure 5 SEM images of the specimen from the fusion line region (The region marked by red 

rectangle is used for EDS test). (a) the sample 2# ; (b) the sample 5#; (c) the sample 9# ; (d) the 

inclusion in sample 9# 

 

Table 3 Chemical compositions of the EDS point analysis in Fig.5 

 

Element 

(wt.%) 
Fe Ni Mn Cu Cr Mo Ti Ca O 

 Point 1 95.62 1.59 2.36 0.23 0.12 0.08 
/ / / 

Point 2 97.27    /      2.27 0.46 / / 
/ / / 

Point 3 95.77 1.55 2.59 0.09 / / 
/ / / 
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Point 4 97.8 / 2.20 / / / 
/ / / 

Point 5 95.4 2.35 2.05 0.06 0.1 0.03 
/ / / 

Point 6 97.29 0.44 2.13 0.06 0.06 0.01 
/ / / 

Point 7 22.01 / 8.26 / / 1.68 11.38 8.45 48.21 

 

3.2 Mechanical properties  

Fig.6 demonstrates the results of microhardness tests according to the lines marked in the left 

schematic diagram of the weldment. As was seen, the variation trends of microhardness distribution 

along lines a, b and c were similar, and the BM and WM showed relatively uniform hardness values. 

By contrast, the HAZ exhibited obvious fluctuating values. These results were consistent with the 

varying trend of microstructure. The WM showed the highest hardness values than those in the other 

regions for all the test deposited layers. The middle-welded layer had the lowest microhardness values, 

particularly, the values in the BM were obviously lower, which was ascribed to the heat accumulation 

due to the high weld heat input of VEGW. The microhardness profiles of the middle layer revealed a 

relatively broadened and softened range, which coincided with the widened thickness in M-CGHAZ 

near the fusion line. 
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Figure 6 (a) Schematic diagram of the hardness test; (b) Microhardness distribution across the 

weldment 

 

 

The toughness of all specimens in the top and bottom layers of the welded joint was examined 

using the Charpy impact tester. The cut mode is shown in Fig.1b. Table 4 describes the impact 

absorbed energy results at -40 0C. Clearly, the deteriorating toughness values of the WM specimen 

were similar among different deposited layers. In addition, the toughness value of the HAZ near the FL 

was higher than that of FL. For specimens cut from the center of WM in the top and bottom layers, the 

Charpy impact results were 76.0 J and 85.7 J, respectively. Typically, the increasing toughness in the 

(a) (b) 
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root WM was possibly due to the existence of martensite in the microstructure. This fracture toughness 

enhancement of martensite was noticed by Earl et al. [13]. 

 

 

Table 4 Results of Charpy impact toughness of VEGW joint 

 

Specimen Impact Energy 

(-40°C, J) 

Specimen Impact Energy 

(-40°C, J) 

Center of WM in  

top layer  
76.0 

Center of WM in 

bottom layer 
85.7 

FL in top layer 141.3 
FL in bottom 

layer 
140.0 

2mm to the FZ in 

top of HAZ 
219.0 

2mm to the FZ 

in bottom of 

HAZ 

212.7 

 

3.3 Electrochemical behavior  

Fig.7 and Fig.8 display the potentiodynamic polarization curves and EIS responses in the 

different regions of the as-welded VEGW joint within the 3.5% NaCl solution at open circuit 

potentials, respectively. It was known from the polarization curves shown in Fig. 6 that, all the curves 

showed similar trends both in cathode and anode behaviors. Besides, the current density increased with 

the potential during the whole anodic polarization process, indicating no passive film formation on the 

test sample surface, which also confirmed that the anodic process was controlled by the activation (or 

charge-transfer) process. On the contrary, the cathodic part of the polarization curve was slightly 

different from the current, which proved that the cathodic process might be determined by the 

diffusion-controlled oxygen reduction reaction. As the polarization went on, the oxide layer was 

formed on the metal surface, which prevented the further oxygen reduction reaction. Deen et al. [6] 

first showed in their study that, the oxide provided a physical barrier to prohibit the cathodic process. 

On the other hand, this oxide also played a role as the surface for oxygen reduction instead of the metal 

base.  

 

 

     
 

(a) (b) 
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 Figure 7. Potentiodynamic polarization curves for different regions of the weldment. (a) Top 

deposited layer; (b) Middle deposited layer; (c) Bottom deposited layer; (d) WM in different 

deposited layer 

 

Table 5 lists the electrochemical parameters obtained from the potentiodynamic polarization 

curves according to the Tafel Curve Fitting method, as reported by McCafferty [14]. Obviously, the 

heterogenous electrochemical parameters further confirmed the microstructural heterogeneity of this 

high heat input weldment. It was easily observed that the WM tested in samples 3#,6# and 9# had more 

positive corrosion potentials than those in other regions, which indicated that the WM showed a higher 

thermodynamic stability. In the meantime, the corrosion current density of WM was markedly lower 

than those of HAZ and BM, revealing that the WM exhibited a lower corrosion rate than others in the 

tested 3.5% NaCl solution. As reported by Qu et al [15], such increased corrosion resistance might 

contribute to the formation of granular bainite in the welded metal. With regard to the WM regions in 

different layers, as shown in Fig.6d, the whole potentiodynamic polarization curve showed an obvious 

tendency along the more negative direction as the deposited layer went from the top to the root 

weldment. Furthermore, the corrosion current density (Icorr) values of the top, middle and bottom layers 

WM were 5.23 μAcm-2, 9.22 μAcm-2 and 4.88 μAcm-2, respectively, which implied that the WM in the 

middle layer was prone to quicker corrosion than the others.   

 

 

Table 5 Potentiodynamic polarization curves parameters of different samples 

 

Different 

layers 
Samples 

Ecorr 

mV 

Icorr 

μAcm-2 

βa (mV/ 

decade) 

βb(mV/ 

decade) 

Top  

1# -689 7.29 73 214 

2# -644 9.35 86 322 

3# -654 5.23 66 317 

Middle  

4# -664 17.2 110 213 

5# -674 13.6 96 237 

6# -634 9.22 67 292 

Bottom  

7# -708 4.21 71 219 

8# -639 8.96 90 214 

9# -698 4.88 90 184 

 

(c) (d) 
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As was observed from the following Nyquist plots present in Fig.8, there was no significant 

difference among all the tested samples cut from different regions of the EH36 welded joint. Typically, 

the x-axis and y-axis in the Nyquist plot represented the real impedance (Zre) and imaginary 

impedance (Zim), respectively. Apparently, a semi-circle was observed in all the plots, which was also 

indicative of the charge-transfer corrosion process. The diameter of semicircle varied markedly among 

different regions, not only in the same deposited layer, but also in the same type of area along the 

longitudinal direction. Notably, the larger diameter of semicircle mainly occurred in the region of WM, 

which was corresponding to the stronger charge transfer resistance; in addition, the most negative 

corrosion resistance appeared in the BM of the middle layer. However, some different variations were 

observed in the Nyquist plot of the bottom layer, which were that, the most negative corrosion 

resistance appeared in the middle region of HAZ instead of BM, and the WM and BM regions had 

equal positive corrosion potential values.  

 

 

 

       
 

     
 

Figure 8 The electrochemical Nyquist plots of different regions of the weldment in 3.5% NaCl 

solution. (a) Top deposited layer; (b) Middle deposited layer; (c) Bottom deposited layer; (d) 

WM in different deposited layer 

 

The equivalent circuit and the values of EC elements are depicted in Fig.9 and Table.6, which 

are obtained according to the Nyquist plot features using the Zismpwin View software. In this 

(a) (b) 

(c) (d) 
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simulated EC model, the impedance of this circuit was in direct proportion to the charge transfer 

resistance (Rct), which represented the sample corrosion resistance in the electrolyte. Meanwhile, Rs 

was the solution resistance, which was defined as the formation ability of the oxide film, as reported by 

Soltis et al. [16]. 

 

  
 

Figure 9. the EC model calculated form the different experimental EIS data 

 

 

Table 6. Impedance parameters of the EIS tested samples 

 

Different 

layers 
Samples Rs (Ω·cm2)  Rct (Ω·cm2) C(μf) 

Top  

1# 4.149 107.3 7.591 

2# 3.957 119.0 10.17 

3# 4.420 226.6 8.069 

Middle  

4# 3.893 39.01 10.65 

5# 9.159 56.15 14.03 

6# 4.965 130.8 21.13 

Bottom  

7# 4.550 183.9 5.456 

8# 4.226 78.57 7.309 

9# 3.953 129.8 11.95 

 

 

Clearly, the highest Rct value (226.6 Ω·cm2) was obtained on the WM of sample 3# in the top 

deposited layer. Meanwhile, the worst corrosion resistance was detected in the middle layer of the 

tested samlple 4#. Overall, the middle layer showed a lower Rct value than those in the other regions, 

which was consistent with the variation trends of microhardness and potentiodynamic polarization 

values. As for the different regions of the as-tested samples, Rs showed the same values, except for 5# 

sample, indicating that most of the tested samples exhibited similar trends to form an oxide film. This 

relatively weak ability to form a dense oxide film in sample 5# might be related to its microstructural 

heterogeneity and the heat accumulation due to the high weld heat input of VEGW. 

 

3.4 SVET current density distribution  

To clarify the detailed corrosion behavior about the heterogeneous microstructure of the 

welded EH36 joint, the current density distribution map around the fuse line in different deposited 

layers of the welded joint was investigated through the SVET method. As shown in Fig.10, all the test 

areas surrounding the FL in samples 2#, 5#, and 9# showed obviously heterogeneous local corrosion 
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performances. The dissimilar area in the SVET map was easily distinguished, as marked in Fig.10. 

Interestingly, the SVET current density distribution map exhibited similar characteristics as those of 

the microstructure. Moreover, different microscopic structures, such as WM, CGHAZ, and FGHAZ, 

had entirely different current density values, which directly revealed the relationship between the 

microstructure and the corrosion resistance.  

The SVET map of sample 2# presented the typical galvanic corrosion features owing to the 

different micro-area corrosion potentials in WM and BM tested by EIS. The galvanic interaction 

occurred between the WM and HAZ, in which the anodic and cathodic reactions took place in the 

FGHAZ and WM, respectively; whereas the CGHAZ was conducted as the transition region from 

anode to cathode. This heterogeneous corrosion attack was in good agreement with the 

potentiodynamic polarization test results about the top deposited layer of the VEGW joint. It was 

concluded that the weld metal in sample 2# represented the cathode region, which was protected in this 

galvanic interaction, while the HAZ region was prone to rapid corrosion in this immersion test. 

Nonetheless, this galvanic corrosion behavior was not observed in the following SVET maps about 

samples 5# and 9#. The SVET probe revealed no cathodic current, and only a total positive current 

density distribution appeared in Fig.10b and Fig.10d.  

 

                   
 

 

 

                                
 

(a) (b) 

(c) (d) 
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Figure 10 Optical microscopic images and SVET current density distribution mapping of the fusion 

line regions in different samples. (The region marked by red rectangle is tested by SVET 

method). (a) Macrograph of the sample 2#; (b) SVET map of tested region in sample 2#; (c) 

Macrograph of the sample 5# and (d) SVET map of tested region in sample 5#; (e) Macrograph 

of the sample 9#; (f) SVET map of tested region in sample 9# 

 

 

This phenomenon might be attributed to the limitations about SVET measurements. According 

to Ikeuba et al [17] and Paik et al [18], it was difficult to detect the local anodic and cathodic current 

densities, while the diameter of the Pt-Ir probe tip was larger than the anode-cathode spacing at the 

active sites. As was observed from Fig.10d, the FGHAZ and CGHAZ of sample 5# showed higher 

current density values than the WM, indicating the worse corrosion performance in the HAZ zones. 

Apparently, From the top tested sample 2# to the root sample 9# along the longitudinal direction, the 

maximum current density gradually increased from 8.5 μA/cm2 to 31.8 μA/cm2. Furthermore, as shown 

in Fig.10c, the WM of sample 9# had the highest current density value (approximately 31.8 μA/cm2) 

compared with those in other areas, in other words, the corrosion attack first emerged on the root weld 

metal surface. It was discovered that the root WM had the worst corrosion resistance, on the other 

hand, the top WM obtained the optimal corrosion properties, which were consistent with the 

potentiodynamic polarization curves and EIS results. 

 

 

3.5 Corrosion morphology in different samples 

Fig. 11 displays the corrosion morphologies of different specimens with three different fuse 

line regions after immersion test in the 3.5% NaCl solution for 24 h. According to Fig.11, there was no 

significant pit corrosion behavior in all the tested samples, and the corrosive products of all samples 

exhibited a uniform corrosion behavior. Qu et al. [15] and Ha et al. [19] discovered that the corrosion 

first took place in the ferrite boundary and the interface surrounding the inclusions, and such initial 

corrosion behavior finally affected the long-term corrosion results. It was apparent that, sample 9# 

demonstrated a loose corrosion product, and samples 2# and 5# had more compact oxide film covered 

on the surface, and this surface contributed to preventing the further corrosion, finally improving the 

anti-corrosive capability.  

(e) (f) 
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Figure 11 SEM images of the corrosion morphologies after 24 min of immersion in the 3.5% NaCl 

solution. (a) the sample 2# ; (b) the sample 5#; (c) the sample 9# 

 

 

 

4. CONCLUSIONS 

In this study, the microstructural heterogeneity features of the VEGW joint are investigated, 

and the corrosion resistance is also discussed through the conventional electrochemical measurement 

techniques and the emerging SVET. The major conclusions of this study can be drawn as follows: 

(1) The optical microscopic microstructure of the VEGW joint is comprised of different 

zones, including BM, ICHAZ, FGHAZ, CGHAZ and WM. Microstructural heterogeneity is observed 

not only in the longitudinal direction, but also long the horizontal direction of the joints. Compared 

with the other welded layers, the middle region shows coarser micro-phase both in FGHAZ and 

CGHAZ. Meanwhile, all WM have more fine grain size than that of HAZ, and a uniform distribution 

of inclusion is observed in the root WM. 

(2) Results of microhardness analysis reveal that the middle-welded layer has the lowest 

microhardness value, which exhibits a relatively broadened and softened range near the fusion line. On 

the other hand, the Charpy impact value decreases from HAZ to WM; compared with the WM in the 

top layer, the root WM exhibits superior toughness.  

(3) Potentiodynamic polarization and EIS results demonstrate that the WM shows higher 

positive corrosion resistance than the other regions, with the only exception in the root layer. The 

highest Rct value (226.6 Ω·cm2) is obtained in the WM of the top layer, which is indicative of the best 

anti-corrosive ability. Overall, the middle layer displays a lower Rct value compared with those in the 

other regions, and the most negative corrosion resistance appears in the BM of the middle layer. 

(4) The SVET results further confirm the microstructural heterogeneity features. With 

regard to the top layer, a galvanic interaction occurs between the WM and HAZ regions. The weld 

metal in the top layer acts as the cathode in the galvanic interaction, while the HAZ region is prone to 

quickly corrode in this immersion test. On the contrary, the corrosion attack first emerges on the root 

weld metal surface instead of the HAZ region. The inclusions in the root WM matrix may give rise to 

the localized corrosion in the interface region, eventually deteriorating the corrosion resistance of the 

matrix.  

(5) Moreover, the vertical electro-gas welding (VEGW) technique still causes the formation 

(a) (b) (c) 
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of heterogeneous microstructures, which finally generate the heterogenous mechanical and 

electrochemical properties.  
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