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Carbon-supported platinum (Pt) for oxygen reduction reaction plays an important role in the operation 

of direct methanol fuel cells (DMFCs). However, complete oxidation of ethanol is difficult due to the 

low chemical activity of Pt / C. Herein, novel highly active Pt-Co/C nanoparticles with controllable 

chemical composition and particle size are prepared via a thermal reduction method. The results 

revealed that the catalyst (particle size: 2–4 nm) is characterized by a good size monodispersity, and 

exhibits satisfactory chemical activity. The nanoparticles were also characterized by an accurate and 

maintained stoichiometry ratio, resulting in improved electrocatalytic activity and anti-poisoning 

ability of the carbon-supported Pt.  
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1. INTRODUCTION 

Carbon-supported platinum (Pt) represents one of the most important development direction of 

direct methanol fuel cells (DMFCs) due to its high catalytic activity [1]. However, its scarcity and 

susceptibility to carbon monoxide (CO) poisoning have limited the development of Pt in the catalytic 

field [2]. The modification of Pt still poses a significant scientific challenge to the development of 

DMFCs [3, 4].  

Previous studies have shown that the catalytic activity of carbon-supported Pt can be 

rationalized in terms of the energy of the d-band center (εd) [5–8]. The proposed model focuses on the 

shift of the d-band center in relation to increasing or decreasing the reactivity of carbon-supported Pt 

catalysts. This is based on a general principle regarding the formation of chemical bonds at a surface: 
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strong bonding occurs if anti-bonding states are shifted up through the Fermi level (and become 

empty). The opposite occurs if anti-bonding states are shifted down through the Fermi level (and 

become filled). Moreover, carbon-supported Pt coatings and doping modifications have also been 

investigated, such as with amorphous graphene [9], titanium dioxide [10], nickel [11], and ruthenium 

[12]. Improved catalytic activity and anti-poisoning ability of the modified carbon-supported Pt was 

achieved in those cases. Most importantly, Zhang et al. [13] suggested that carbon-supported Pt 

nanoparticles with uniform and fine dispersivity exhibit satisfactory catalytic activity. The above 

experimental findings indicate that good catalytic activity properties can be obtained through 

appropriate selection of doping materials and reduction of the nanoparticle size [14, 15]. In addition to 

its natural abundance, cobalt (Co) is characterized by its good catalytic activity and chemical corrosion 

resistance.[16–18]. 

In this work, Co is employed for the doping modification of carbon-supported Pt. The special 

electronic structure of Co can yield an improved anti-toxic effect and a reduction in the d-band center 

of carbon-supported Pt [19, 20]. The influence of the doping modification on the crystal structure, 

particle morphology, catalysis performance, and the anti-toxic effect is systematically investigated. 

The results of this work may prove useful in meeting the energy requirements for future electric 

vehicles and other energy-demanding devices. 

 

 

2. MATERIALS AND METHODS 

2.1. Materials and preparation 

Acetoacetone platinum (80%), cobalt acetate (97%), 1,2-tetradecanediol (C14H30O2, 90%), o-

dichlorobenzene (C6H4Cl2, AR), oleic acid (CH(CH2)7COOH, AR), oleylamine (C18H37N, 80-90%), 

diphenyl ether (C12H10O, ≥99.9% (GC)), carbon mesopor (AR), and ethanol (C2H6O, AR) were 

purchased from Aladdin (Shanghai, China). 

Pt3Co/C, PtCo/C, and PtCo3/C were prepared as follows: a) 60 mg of platinum acetoacetone, 

12.3 mg/ 36.8 mg/ 10.3 mg of acetic acid diamond, and 43 mg of 1,2-tetradecanediol, 0.6 mL of o-

dichlorobenzene, 0.2 mL of oil acid, 0.2 mL of oleylamine and 15 mL of diphenyl were added to a 

three-necked flask containing ether; b) a collector-type magnetic heating stirrer was used for the co-

reduction reaction. The temperature was adjusted to 80 °C with aeration gas (i.e., nitrogen (N2)), and 

then incubated for 30 min in order to remove the water from the sample. Afterward, (126.8 mg/ 150 

mg/ 219.6 mg) carbon mesopor was added, and the temperature was raised under the stirring of a glass 

rod. After the temperature reached 220 °C, the temperature was maintained for 1 h to ensure that the 

reaction was completed. c) The sample was placed in ethanol, and suction filtration was then 

performed. The sample was then placed in a vacuum drying box and dried for 12 h at 60 °C under 

vacuum. d) The dried samples were treated at 250 C for 60 min under N2; e) These samples were then 

processed at 400 °C for 4 h under N2 + H2 (N2:H2 = 2:1). After the heat treatment was completed, the 

samples were left to cool in the furnace. 
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2.2. Characterization  

The microstructure was characterized by means of field-emission scanning electron microscopy 

(FESEM; TESCAN VEGA3) and transmission electron microscopy (TEM; Tecnai G2 20 STWIN) 

performed at 5 kV and 160 kV, respectively. The phase structure was determined via X-ray diffraction 

(XRD; D/Max-2200) performed at 30 kV and 30 mA using Cu-Kα radiation (λ=0.15406 nm) for 2θ 

ranging from 20° to 90°. The surface chemical state of the product was evaluated by means of X-ray 

photoelectron spectroscopy (XPS; PHI5000 Versaprobe-II ULVACPHI) employing Al-Kα radiation.  

 

2.3. Preparation of the working electrode 

The working electrode was prepared in accordance with a previously reported procedure. 

Typically, the catalyst dispersion was prepared by mixing 8 mg of catalyst in 2.5 mL of solution 

containing 2.4 mL of ethanol and 100 µL of 5 wt.% Nafion solution. This mixture was then subjected 

to 30 min of ultrasonication. A glassy carbon (GC) GC disk electrode (diameter: 5 mm) served as the 

substrate for the support. Prior to use, the GC electrode was polished using aqueous alumina 

suspension on felt polishing pads. Afterward, the catalyst suspension was pipetted (by means of 

micropipetting) on the GC surface, leading to a catalyst loading of 0.2 mg/cm2 for each catalyst. The 

working electrode was dried under N2 flow at room temperature. 

 

2.4. Electrochemical tests 

The electrochemical performances were assessed using an electrochemical workstation 

(CHI760E) and a three-electrode system. This system consisted of a glassy carbon (GC) electrode, Pt 

plate counter electrode, and saturated calomel electrode (SCE) which is separated from the working 

electrode compartment by a closed electrolyte bridge.  

The catalyst performance in the room-temperature oxygen reduction reaction (ORR) was 

evaluated in HClO4 electrolyte solution (0.1 mol/L) using a glass carbon rotating disk electrode (RDE) 

at a rotation speed of 1600 rpm. Negative-going linear sweep voltammograms were recorded from 1.2 

V to 0 V at 100 mV·s−1 and room temperature in the presence of bubbling ultra-pure oxygen to 

maintain a saturated oxygen atmosphere near the working electrode. For the ORR polarization curve, 

the current density was normalized with reference to the ECSA to obtain the specific activities.  

The catalyst performance in the room-temperature methanol oxidation reaction (MOR) was 

also measured by means of cyclic voltammetry. For these measurements, a potential window of 0 V to 

1.5 V was scanned at 100 mV·s−1 until a stable response was obtained, and the voltammograms were 

then recorded. An aqueous solution of 0.1 mol/L HCIO4 with 2.0 mo1/L CH3OH was used as the 

electrolyte. For each catalyst, the specific activity was obtained by normalizing the current density by 

the corresponding ECSA. The electrolyte solutions were purged with high-purity N2 gas for 30 min to 

reduce the level of oxygen dissolved prior to each cyclic voltammetry measurement, and the solution 

kept under N2 flow. In addition, a chronoamperometry curve was measured at a constant potential of - 

0.5 V under ambient conditions. 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

3753 

To ensure O2 saturation during the linear sweep voltammetry (LSV) measurement, O2 was 

passed through the electrolyte. The measurements were performed at a scan rate of 5 mV s−1 with 

HClO4 solution (0.1 mol/L) as the electrolyte.  

 

3. RESULTS AND DISCUSSION 

3.1. Microstructure 

In general, the smaller nanoparticles exhibited better chemical activity than the larger 

nanoparticles. Fig. 1 shows TEM images and grain distributions of the Pt3Co/C, PtCo/C, and PtCo3/C. 

As shown in the figure, the samples consist of nearly spherical uniformly sized grains (grain radii of 

2.30, 1.98, and 1.78 nm observed for Pt3Co/C, PtCo/C, and PtCo3/C, respectively). The TEM image in 

Fig. 1c shows that, compared with Pt3Co/C and PtCo/C, PtCo3/C is characterized by a better dispersion 

and a smaller nanoparticle size. That is, Co can reduce the surface energy during nanoparticle growth, 

thereby preventing the agglomeration and growth of nanoparticles [21, 22]. 

 

 
 

Figure 1. TEM images and grain size distribution of the samples (a) Pt3Co/C; (b) PtCo/C; (c) PtCo3/C. 

 

3.2. Phase composition and valence states of the elements 

 

Figure 2. XRD patterns of (a) Pt3Co/C, PtCo/C, and PtCo3/C samples; (b) magnified view of area 1 

shown in Fig. 2a. 
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Fig. 2 shows the XRD patterns of the as-prepared Pt3Co/C, PtCo/C, and PtCo3/C. The 

diffraction peak of Pt (PDF#040802) occurs for all three samples, verifying that the nanoparticle is 

composed of Pt [23]. Compared with those of Pt3Co/C, the diffraction peaks gradually shift to higher 

2θ values as the Co composition in the Pt–Co nanoparticle increases (Fig. 2b). This can be attributed to 

a decrease in the lattice distance when smaller Co atoms replace Pt atoms in the lattice [24]. Notably, a 

diffraction peak, which could be indexed as the (002) crystal planes of graphite (PDF#41-1487) [25], 

occurs for all three samples.  

The chemical composition of Pt3Co/C, PtCo/C, and PtCo3/C is investigated further via XPS 

(see Fig. 3). The evidence presented in Figs. 1 and 2 suggests that the nanoparticles are composed of 

Pt, Co, and C, as indicated in Fig. 3a. The binding energy scale was corrected based on the C1s peak 

(284.8 eV) as a standard of the internal binding energy [26]. Notably, the Pt4f7/2 peak is characterized 

by multiple pairs of overlapping peaks, attributable to Pt4f7/2 and Pt4f5/2, of metallic Pt species. The other 

two pairs of peaks correspond to Pt2+ species. Some Pt2+ may have resulted from incomplete 

restoration during the co-restore reaction.  

 

 

 
 

Figure 3. X-ray photoelectron spectroscopy (XPS) scan results of the samples (a) survey spectrum and 

Pt4f7/2; (b) Pt3Co/C; (c) PtCo/C; (d) PtCo3/C. 

 

Importantly, the Pt4f binding energy of the Pt-Co/C nanoparticles is blue-shifted compared 

with that of Pt. For example, the Pt4f7/2 of Pt3Co/C, PtCo/C, and PtCo3/C occurs at binding energies of 

71.5, 71.6, and 71.7 eV, respectively [27]. This is due to the fact that the electronic structure of Pt is 

mainly affected by Co, which induces the lattice compression strain of Pt. The consequent blue-
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shifting of the Pt4f binding energy results in improved catalytic activity of the catalyst. The binding 

energy is strongly correlated with the adsorption/desorption capability of reaction species on the 

catalyst surface, consistent with the d-band center of the Pt-Co/C nanoparticles [28]. 

Table 1 shows the test results of Pt4f7/2 and Pt4f5/2 corresponding to Pt-Co/C nanoparticles with 

different Pt:Co molar ratios. The electronic binding energy is basically unchanged for Pt4f7/2 in 

Pt3Co/C, PtCo/C, and PtCo3/C, but drops to 75.00–74.96 eV for Pt4f5/2. The decrease in the electronic 

binding energy of Pt4f5/2 results partly from the fact that the graphitization degree of the carbon 

support in the Pt3Co/C, PtCo/C, and PtCo3/C catalysts has been reduced. Consequently, the electronic 

interaction between Pt and C is weakened. However, due to the electronegativity difference between Pt 

and Co, the electrons are transferred from Co with low electronegativity to Pt with high 

electronegativity, thereby reducing the adsorption energy of the Pt-Co bond [29, 30].  

 

Table 1. XPS spectroscopic data of the samples shown in Figure 3. 

 

Sample Pt4f7/2 Pt4f5/2 

Pt/C [31] 71.60 75.00 

Pt3Co/C 71.59 74.96 

PtCo/C 71.60 74.96 

PtCo3/C 71.59 74.98 

 

3.3. Electrocatalytic activity of anode methanol oxidation 

 

 

Figure 4. The (a) CV (scanning rate: 100 mV/s) curves and (b) LSV (scanning rate: 5 mV/s) curves of 

the samples in 0.1 mol/L HCIO4 at 25°C. 

 

The catalyst performance in the oxygen reduction reaction (ORR) is also investigated by means 

of cyclic voltammetry (CV) and linear sweep voltammetry (LSV), as shown in Fig. 4. Significant Pt 

electrochemical characteristic peaks are observed in Fig. 4a. Furthermore, Fig.4a also reveals half-

wave potential (E1/2) values of 0.5 V, 0.55 V, and 0.6 V for Pt3Co/C, PtCo/C, and PtCo3/C, 

respectively. Besides, the CV test performed on the PtCo/C nanoparticles shows that the current 

density increases with increasing Co content. The highest current density (4.2 mA/cm2), which is 

obtained for the PtCo3/C catalyst, is 0.6 and 0.4 times higher than those of the Pt3Co/C and PtCo/C 

catalysts, respectively. More importantly, it can also be found that the catalytic activity of PtCo/C 
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nanoparticles enhances with increasing Co content according to cyclic voltammetry (CV) and linear 

sweep voltammetry (LSV) experiments. These results suggest that the electrochemical activity of 

PtCo3/C has been significantly increased [32]. 

The PtCo/C nanoparticle methanol oxidation reaction (MOR) is investigated by measuring the 

CV profiles of Pt3Co/C, PtCo/C, and PtCo3/C in HCIO4+2.0 mo1/L CH3OH, as shown in Fig. 5. The 

high cathodic peak current density (of the density values obtained) can be used to evaluate the catalytic 

activity of the PtCo/C nanoparticle, and comparable peak current densities imply good electrocatalytic 

activity [33]. As shown in the profiles, methanol oxidation of Pt3Co/C, PtCo/C, and PtCo3/C occurs at 

current densities of 28.34 mA/cm2, 43.50 mA/cm2, and 65.34 mA/cm2, respectively. PtCo3/C exhibits 

the best activity due to its high content of Co that can reduce the d-band center and improve the 

catalytic activity [28]. In addition, compared with Pt3Co/C and PtCo/C, PtCo3/C is characterized by a 

smaller average particle size and, hence, contains more active sites [34]. The anodic peaks shift to 

lower potential with increasing Pt:Co molar ratio. Under low potential, oxygen species are easily 

generated by Co. The oxygen species can oxidize the CO molecules adsorbed on the surface of the Pt 

atom, thereby improving the resistance of the Pt-Co/C nanoparticles to CO poisoning. In addition, 

compared with the other two catalysts, the PtCo3/C catalyst exhibits better catalytic activity for 

methanol oxidation, owing possibly to the strong electronic interaction between the Pt and Co interface 

[35].  

 

 
 

Figure 5. The CV curves (scanning rate: 100 mV/s) of the samples in 0.1 mol/L HCIO4 with 2.0 

mo1/L CH3OH aqueous solution at 25C. 

 

The anti-poisoning ability of the catalyst is generally expressed in terms of the If/Ib value. The 

occurrence of a positive peak (If) indicates the oxidation potential of methanol and the occurrence of 

the reverse peak (Ib) indicates the oxidation of the carbon-containing intermediate generated in the 

forward sweep process [36]. The If/Ib value increases with increasing anti-poisoning ability of the 
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catalyst. The doped Co is easily oxidized in the air and, hence, the If/Ib value increases with increasing 

molar ratio of Co:Pt, as shown in Table 2. During the reaction, the oxidized Co on the surface of the 

PtCo/C nanoparticles can adsorb (to a certain extent) the intermediate-product CO oxidized by 

methanol. This results in oxidation of the product to carbon dioxide, leading to an increase in the 

amount of Pt released. The active site participates in the process of adsorption and oxidation of 

methanol, thereby improving the catalytic performance and anti-poisoning performance of the PtCo/C 

nanoparticles [35]. 

 

 

Table 2. If/Ib values of the samples considered in Figure 5  

 

Sample If/Ib 

Pt/C [37] 5.2 

Pt3Co/C 9.5 

PtCo/C 15.2 

PtCo3/C 23.5 

 

 

 
 

Figure 6. Chronoamperometric curves and changes in the morphology of the samples after testing in 

0.1 mol/L HCIO4 with 2.0 mo1/L CH3OH aqueous solution at 25C and a potential of 0.5 V (a) 

chronoamperometric curves of the samples; changes in the morphology of Pt3Co/C (b), PtCo/C 

(c), and PtCo3/C (d). 

 

The methanol oxidation current of the PtCo/C nanoparticles was measured by means of 

chronoamperometry, as shown in Fig. 6. These results reveal that the PtCo3/C catalyst is highly stable, 

with the catalytic activity retained for numerous consecutive runs. After the chronoamperometry test, 

the morphology and good dispersion of the PtCo/C nanoparticles remain almost unchanged. 
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Combining the above evidence with the results of the present study confirms that increasing the Co 

content of the nanoparticles leads to significant enhancement of the catalytic activity and anti-toxicity 

[15]. 

The catalytic activity of the PtCo/C nanoparticles prepared in this work was considerably larger 

than that of other similar catalysts, as shown in Table 3. The specific activity (js) and If/Ib of the 

catalyst in the present work are superior to those of the catalysts reported in the literatures, indicating 

the remarkable catalytic capability of the PtCo/C nanoparticles for methanol. 

 

 

Table 3.  Specific activity (js) and If/Ib of the catalyst for methanol obtained via different methods. 

 

the type of catalysts 
js 

(mA cm−2) 
If/Ib 

Pt/C [37] 11.62 5.2 

PtRu/C [38] 25.71 18.1 

Pt/ TiO2-C [39] 14.33 15.4 

This work 65.34 23.5 

 

 

4. CONCLUSIONS 

1) PtCo/C nanoparticle catalysts with different molar ratios are prepared by means of a 

reduction method. The catalysts can be listed as follows, PtCo3/C>PtCo/C>Pt3Co/C, i.e., in descending 

order of catalytic activity for methanol oxidation. With increasing Co content, the anti-poisoning 

performance of the catalyst is enhanced. 

2) Through the aforementioned reduction method, nanoparticles with a particle size of 2–4 nm, 

good monodispersion, and uniform distribution on the surface of a carbon carrier are synthesized. The 

peripheral electronic structure of Pt can be changed and the d-band center reduced by adding 

appropriate amounts of Co to the particles. Furthermore, the adsorption capacity of Pt on CO is 

reduced and the number of Pt active sites is increased, thereby improving the methanol oxidation 

performance and anti-poisoning ability of the PtCo/C nanoparticles. 
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