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In this paper we discuss the problem of discussing the transport and catalytic reaction kinetics at redox  

enzymes immobilized within an electronically conductive polymer matrix where the effect of inhibition 

is specifically considered in the rate equation. Here the reaction kinetics are not of the simple Michaelis-

Menten type. WE describe a mathematical procedure based on the recently developed technique 

developed by Akbari and Ganji which facilitates a full analytical solution of the boundary value problem 

which is valid over an extended substrate concentration range. Closed form expressions for both the 

substrate concentration in the film and the steady state amperometric current response are presented. 10 

limiting kinetic cases are identified and discussed. 
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1. INTRODUCTION 

The problem of quantitatively describing the transport and kinetics of reactants within bounded 

thin polymeric films (aka chemically modified electrodes) is very challenging and various approaches 

have been developed over the last 30 years[1.2]. The early work of Saveant et al[3] and Albery and 

Hillman4 is seminal. This early work had a focus on describing diffusion coupled with bimolecular 

reaction or diffusion coupled with substrate pre-activation within a thin film. This topic remains of 

interest due to the fact that it enables the technologically important areas of chemical/bio-sensing and 

surface catalysis within fuel cell and electrolysis devices to be described in a mathematically precise 

manner[5,6]. Using this approach an analytical solution to a well defined reaction/diffusion problem can 

be developed which will describe how the concentration of the reactant (or substrate) will vary through 
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the catalytic layer as a function of distance and time. It also enables an expression for the net  reaction 

rate or reaction flux  to be derived.  In electrochemical systems the reaction flux is usually expressed as 

a current. This can be related in a definite way to real system parameters such as catalyst loading, catalyst 

concentration, substrate concentration and film thickness. The mathematical model should make simple 

predictions on how the reaction rate depends on each of the latter parameters and thereby enable the 

rational design of a modified electrode in which substrate detection/catalysis is optimized. We have 

recently summarised advances in modelling the mechanism of mediated electron transfer at redox active 

surfaces where the binding interaction between surface site and substrate can be complex [7].  

In the present paper we focus attention on amperometric chemical sensing via surface 

immobilized redox active catalytic species (such as redox enzymes) which are embedded in a polymeric 

support matrix. In amperometric detection the target analyte diffuses through the solution phase, 

partitions into the catalytic film, diffuses within the film and subsequently is oxidized at the catalyst 

surface  within the layer . The oxidized active form of the reduced catalyst is regenerated via application 

of an oxidizing  potential at the support electrode. Communication between the underlying support 

electrode is accomplished in one of two ways. If the matrix containing the catalytic species is 

electronically conductive then the active form of the catalyst may be regenerated at a polymer strand 

which is in direct electronic communication with the support electrode surface and hence  responds the 

applied potential input. Conversely if the polymer matrix in non conducting a small molecule redox 

mediator may be used to shuttle charge between catalyst and support electrode thus facilitating catalyst 

regeneration and turnover. The redox mediator (in its reduced form) diffuses from the solution, partitions 

into the film, diffuses to the catalytic site, reacts there and subsequently a fraction of the oxidized 

mediator diffuses to the electrode where it is regenerated via oxidation to its reduced form to continue 

the catalytic cycle. Some oxidized mediator diffuses in the opposite direction and is lost from the layer. 

In this paper we only consider the first  scenario in which the polymer matrix is electronically 

conducting[8]. This scenario is presented in fig.1. The second scenatio, that of a non conducting polymer 

matrix with charge shuttling between enzyme active site and underlying support electrode, has been 

previously described9. 

 

 

 

Figure 1. Schematic representation of reaction/diffusion in a conducting polymer matrix containing 

immobilized catalytic particles such as redox enzymes. The polymer strand serves as a molecular 

wire and the mediator reacts along the polymer strand. 
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Consequently we focus attention on the situation where the redox enzyme is immobilized within 

an electronically conducting polymer material[8]. We assume planar diffusion of substrate within a 

conductive film of thickness L. Substrate diffusion within the film obeys the  Fick diffusion equation. 

Furthermore, we assume that the substrate/enzyme reaction exhibits Michaelis-Menten kinetics. We will 

extend our previously published analysis8 and  solve the relevant reaction/diffusion equation to obtain a 

useful closed form analytical expression for the substrate concentration profile within the thin film (i) 

when inhibition effects are initially absent and (ii) when they operate. We well then derive an expression 

for the steady state amperometric current response.  

The reaction diffusion equation pertinent to this  problem will be non-linear because of the 

Michaelis-Menten kinetic term. In recent years Rajendran and co-workers[10.11] have used the 

variational iteration method (VIM) to model the response of a potentiometric and amperometric enzyme 

sensor in which linear diffusion is coupled to non linear Michaelis-Menten kinetics. This technique 

produces solutions to the boundary value problem in terms of convergent series requiring no linearization 

or small perturbation. The analytical results valid for all saturation parameter values  were compared 

with those earlier limiting cases proposed by Lyons et al[8] and were found to be in good agreement. 

More recently Malvandi and Ganji[12] developed a variational iteration method coupled with Padé 

approximation (VIM-Padé) to obtain analytical expressions involving rational functions for substrate 

concentration profiles for bounded catalytic systems with non linear Michaelis-Menten Kinetics. 

Rajendran et al[13-15] outlined how the method of homotopy perturbation could be used to derive an 

analytical expression for the substrate concentration profile within a thin layer when the reaction kinetics 

exhibit Michaelis-Menten kinetics. Finally Dharmalingam and Veeramuni[16] applied the Akbari-Ganji 

method (AGM) to develop an expression for the amperometric current response to non linear 

reaction/diffusion in an electroactive polymer film.  

It has long been recognised  that enzyme reaction  kinetics may be affected by the presence  of 

an inhibitor . Enzyme function can be affected by substances called inhibitors (which we denote as I). 

Often, a reversible association of inhibitor with enzyme E prevents product P formation. Hence, either 

the enzyme/inhibitor complex EI is incapable of binding substrate S, or if the substrate is bound, it cannot 

react to form product. In this paper attention will be focused on the manner in which mixed inhibition 

(MI) can be factored into a reaction/diffusion equation involving Michaelis-Menten reaction kinetics in 

a bounded diffusion region (a thin polymeric film). In mixed inhibition the inhibitor I may bind to the 

enzyme whether or not the latter has already bound the substrate S, but has a greater affinity for one state 

or the other. Mixed Inhibition is a conceptual mixture of competitive inhibition (CI) in which the 

inhibitor I can only bind to the catalytic site if the substrate S has not already bound, and uncompetitive 

inhibition (UI) in which I can only bind with the enzyme if the substrate S has already been bound. If 

the ability of I to bind with the catalyst is exactly the same whether or not the catalyst is already bound 

to substrate, it is known as non competitive inhibition (NCI). We have already discussed the interesting 

case of substrate inhibition (SI) in a recent paper[17]. Albery and co-workers[18]  have also made a 

seminal contribution to the problem of enzyme kinetics in bounded regions with product inhibition 

operating.  
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2. PLANAR REACTION DIFFUSION IN A BOUNDED REGION. 

2.1. Inhibition Effects Absent 

We initially consider the simple case of planar diffusion and reaction of substrate S within a thin 

conductive film of thickness L immobilized on a support electrode containing a homogeneous 

distribution of catalytic enzyme particles of concentration e  . The enzyme particle are assumed to be 

immobile. Hence the governing reaction diffusion equation admits the following form: 

 
2

2

d
0

d

c
S

M

k e ss
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x K s

− =
+

  (4) 

In this expression we introduce the pseudo first order rate constant c Mk k e K=  where e  

denotes the total catalyst concentration (molcm-3) respectively. This equation must be solved subject to 

the following boundary conditions: 

 
d

0 0
d

s
x x L s s

x
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Here κ denotes the partition coefficient of substrate and s∞ is the bulk concentration of substrate 

in solution. Hence the product s   represents the reactant concentration at the layer solution interface. 

The latter boundary condition implicitly assumes that concentration polarization of substrate in the 

solution may be neglected. 

We introduce the following dimensionless quantities: 
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Where ,u   represent the dimensionless concentration and distance parameters respectively. 

Furthermore   denotes a saturation parameter and   defines a reaction/diffusion parameter. The 

saturation parameter compares the value of the substrate concentration in the layer to the Michaelis 

constant. When this parameter is small the catalytic kinetics is unsaturated and the rate is first order with 

respect to substrate concentration. When it is large the kinetics are saturated and zero order kinetics 

pertain. The reaction /diffusion parameter compares the rate of reaction between substrate and catalyst 

moiety and the rate of substrate diffusion in the layer and is directly related to the Thiele modulus via 

the following expression: KL X =  =  where 
K SX D k=  denotes a characteristic reaction layer 

thickness which is a measure of the distance travelled by the substrate in the film before it reacts with 

the immobilized catalyst particle. 

Hence eqn.4 transforms to: 
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which must satisfy the following boundary conditions 
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Now the net amperometric current corresponding to the rate of substrate reaction in the layer  is 

given by the following equivalent  expressions: 
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Consequently we can introduce a normalised steady state  current or reaction flux y as follows: 
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Hence the problem reduces to evaluating an analytical expression for u which will be valid for 

all values of   and   . Once this is achieved an analytical expression for the normalised flux of the 

amperometric sensor can be readily derived via eqn.10. 

In earlier work8 we have proposed analytical steady state solutions to eqn.9 which are valid for 

the limiting cases of low and high saturation parameter values, and have proposed a solution based on 

the reasonable assumption that the non - linear kinetic term  
1

u

u+
 can be approximated by the linear 

expression 
( )
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 . Hence the reaction/diffusion equation transforms to: 
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We have shown that this approximation is valid only for certain values of   and u. Specifically 

the approximation pertains for all values of u where the Michaelis-Menten kinetics are unsaturated (when 

1   . For 1   the approximation becomes inaccurate if significant depletion of substrate occurs 

within the film , if u falls to less than  0.8 at any point in the film. This will occur when the parameter   

is large. In short our strategy was to transform the non linear reaction/diffusion equation into a linear 

equation which can be readily integrated. 

In this paper we further  develop the AGM to examine steady state non linear reaction diffusion 

in bounded thin films of planar slab geometry with a particular focus on amperometric detection. Hence  

we solve eqn.7 subject to the conditions outlined in eqn.8 to obtain approximate closed form analytical 

expressions for the substrate concentration profile and   the normalised reaction  flux which are valid for 

all values of the saturation parameter   and defined values of the reaction diffusion parameter   . We 

will compare the approximate solution with the numerical solution obtained using the NDSolve facility 

in Mathematica 12 to determine the parameter set where goodness of fit between the simulated and 

closed analytical solution is optimized. We do this for the slab geometry.  The  cases of both spherical 

and cylindrical diffusion coupled with non linear Michaelis-Menten reaction kinetics will be discussed 

in a subsequent paper .  

We follow  the recent excellent work of Dharmalingam and Veeramuni[15] and assume that a 

suitable solution for the reaction/diffusion presented in  eqn. 7  will have the following form:  

    ( ) cosh sinhu A B  = +   (12) 

We can readily show using the boundary conditions presented in eqn.8 that sechA =  and 

0B =  and we obtain: 
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We now use the approach of Dharmalingam and Veeramuni[15] and we  use the Akbari-Ganji 

method (AGM) to evaluate the unknown parameter   . This is a powerful semi-analytic approach for 

solving non linear ordinary differential equations. In this method a solution function consisting of 

unknown constant coefficients is assumed satisfying the target differential equation. This solution is 

substituted into the latter to generate one or more algebraic equations. Finally, the unknown coefficients 

are computed using these algebraic equations in which a relevant boundary condition is inserted . The 

literature describing this method is not at all clear in discussing the general validity of this approach. 

However the closed form approximate analytical solutions obtained using AGM are in good agreement 

with numerically simulated results and with other approximate methods of solution such as VIM or 

HPM[9,10,12-14]. To  follow AGM we introduce the following function: 
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Hence substituting eqn.13 into eqn.14  we obtain: 
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This will only be true provided 1 = 1 and so from eqn.8  we note that: 
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Consequently we obtain t: 
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Hence the solution to eqn.6 is: 
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Furthermore the substrate concentration at 0 =  is given by: 
0 sech

1
u





 
=  

+ 

 .  

The very interesting result presented in eqn.18  can also be obtained by employing the Homotopy 

Perturbation method (HPM)[19,20]. 

We  again consider eqn.7 and the boundary conditions outlined in eqn.8.  We can construct the 

following homotopy: 
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1 The fact that we need to evaluate the substrate concentration gradient at 1 =  using this expression for the substrate concentration 

suggests that the expression derived for the normalized current is validly obtained. 
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Here p is an embedding parameter and  0,1p  . Taking the limit as 0p →  we obtain the zeroth 

order approximation2: 
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This is valid since 1 1u =  from eqn.8. This expression has the solution given by eqn.18 with  
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When we have unsaturated catalytic kinetics and 1   , then  eqn.18 reduces to: 

 ( ) sech coshu       
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  (21) 

This is the same as eqn.10 in our initial 1996 paper 8. Alternatively for saturated catalytic kinetics 

1   and eqn.18 reduces to: 
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Eqn.22 can be simplified further. If the argument in the hyperbolic cosine functions is small then 

we can Taylor expand the functions to give: 2cosh 1
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 and so 

the substrate concentration profile when the catalytic kinetics are saturated is alternatively given by: 
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This expression for the concentration profile is valid when 1
2




  . The expression in eqn.23 is 

the same as that presented in eqn.11 of   our initial 1996 paper8.  

When the reaction/diffusion parameter   is large then the catalytic reaction kinetics are much 

faster than substrate diffusion through the film, then we note that 
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 and so the normalised substrate concentration profile takes the 

following form: 
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Physically this expression corresponds to an exponential decay in concentration from an initial 

value of u = 1 at 1 =  with a time constant of 
1



+
 in a direction going in to the film from the outer 

 
2 We can show that the first order approximation to the substrate concentration in the film, which we label  

(1)u  , is given by: 
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(0)u  is given by eqn.18. Hence a more accurate solution to the boundary value 

problem is: ( ) (0) (1) .....u u pu = + +  . 
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surface. Hence there is considerable concentration polarization of substrate in the layer. Alternatively 

when the reaction/diffusion parameter is small corresponding to the case where catalytic reaction kinetics  

are more sluggish than substrate diffusion through the layer corresponding to for 1   we note that : 
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1 1 2 1 2 1

u
   

  
   

     
=  − +         + + + +      

  (25) 

Hence under these circumstances there is little concentration polarization of substrate within the 

film. The unsaturated catalytic kinetics are much more sluggish than substrate diffusion, and a uniform 

substrate concentration with little depletion is expected in the layer. 

The approximate analytical solution outlined in eqn.18 is directly compared with the numerical 

integration of the non-linear reaction/diffusion equation presented in eqn.7. This was achieved using the 

NDSolve capability in Mathematica 12. The results are presented in fig.2 for the case of unsaturated 

catalytic kinetics and in fig.3 for saturated catalytic kinetics. We note that the correspondence between 

simulated and closed form analytical solutions are generally excellent in both scenarios. In fig.4 we 

examine the general case where the saturation parameter is close to unity. Here we choose 1 =  an 

compare simulation results with the closed form analytical solution  under conditions where the balance 

between catalytic kinetics and substrate diffusion is varied. Again very good agreement is observed . 

The largest divergence is observed in panel C where substrate depletion is significant which occurs at 

large   values. These results suggest that the general solution is of most use is the scenario where there 

is balance between catalytic reaction kinetics and substrate diffusion and where the substrate 

concentration in the film is close to the Michaelis constant of the catalytic reaction. 

 

 

 

 

Figure 2. The variation of substrate concentration within the layer under conditions of unsaturated 

catalytic kinetics ( 1   ). The numerical solution (blue curve) is compared with eqn.18 (orange 

curve). The substrate diffusion rate as compared with the rate of catalytic reaction increases from 

panel A through panel D. 
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Figure 3. The variation of substrate concentration within the layer under conditions where the catalytic 

kinetics are saturated ( 20 =  ). In panel A the catalytic kinetics are much slower than substrate 

diffusion, whereas in panel B substrate diffusion is much slower than the catalytic kinetics and 

substrate depletion is significant. Here the best fit with the simulation (blue curve) is the profile 

corresponding to eqn.23 (green curve) rather than that predicted from eqn.18 (orange curve). 

 

 
 

 

Figure 4. The variation of substrate concentration within the layer under conditions where the catalytic 

kinetics are borderline between unsaturated and saturated ( 1 =  ). In panel A the catalytic 

kinetics are much slower than substrate diffusion, whereas in panel B catalytic kinetics and 

substrate diffusion are in balance. In panel C substrate diffusion is much slower than the catalytic 

kinetics and substrate depletion is significant. The numerical solution (blue curve) and the closed 

form analytical solution (orange curve) are in very good agreement except when substrate 

depletion within the layer is significant (large   values). 

 

 

The normalised current response y is obtained via eqn.10 .  We may readily show that: 
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y
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  (26) 

This expression is termed the general case and will pertain to the situation where the catalytic 

kinetics are neither unsaturated nor saturated when   is close to unity.  In fig. 5  the variation of the 

normalised current computed via eqn.26, with saturation parameter  , is presented for values of the 
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reaction/diffusion parameter   in the range 0.05 to 15. This is in effect a normalised calibration curve ,   

which depicts the variation of current response with substrate concentration. In fig. 6 the normalised 

current is plotted as a function of reaction/diffusion parameter    , for various defined values of the 

saturation parameter  ranging from 0.1 to 10.  Limiting values for the normalised amperometric current 

response  valid for all   values are readily derived in the limits of: 1   and 1   respectively. 

Furthermore other limiting expressions are obtained in the limit of 1   and 1   for all   values. 

Eqn. 26 defines the general case.  

 

 

Figure 5. The variation of normalised current with saturation parameter computed via eqn.26. This 

defines the calibration curve for an amperometric sensor exhibiting Michaelis-Menten kinetics. 

 

In our earlier 1996 paper[8]  we quoted an empirical expression constructed by Albery and co-

workers[16] for immobilized enzyme electrodes which could be adapted to describe reaction/diffusion 

in electroactive thin films. Indeed we fitted our experimental data to this expression. The Albery equation 

is : 

 ( )( )
( ) ( )

2 ln 1 tanh
1 2 ln

Ay
 

  
  

 
 = − +
 + − 

  (27) 

In fig.7 we compare eqn.24 and eqn.25 derived using AGM proposed by Dharmalingam and 

Veeramuni[16] directly for a fixed value of 15 =  and for a range of saturation parameter values 

between 0 and 100. Both normalised current response curves exhibit a similar development but the 

Albery expression over estimates the normalised flux by a significant amount.  

In fig.8  we present the variation of the steady state flux ratio AY y y=  as a function of saturation 

parameter   values over a wide range from 0 to 1000. Each curve presented corresponds to a set value 

of the reaction/diffusion parameter   ranging from 0.1 to 1000. This figure suggests that when   values 

are less than 0.1 the normalised flux ratio is essentially  unity over the entire range of   values. However 

as the magnitude of   increases corresponding to more favourable catalytic reaction kinetics in the layer, 

the normalised flux ratio Y initially decreases with increase in   value, to a broad minimum located 

within a specific   value range, and then increases again as the saturation parameter value is increased 

still further to approach a value of unity in the limit of large saturation parameter values. Furthermore, 
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the location of the flux ratio minimum varies with   value, being located at increasingly larger   values 

as the catalytic kinetics become more rapid. 

 

 
Figure 6. Variation of normalised current response computed via eqn.26 with reaction/diffusion 

parameter for various values of saturation parameter. 

 

 

 

Figure 7. The expression derived by Albery (eqn.27) and the expression presented in the current work 

derived from AGM or indeed via HPM (eqn.26) for the normalised flux compared for a fixed 

value of reaction/diffusion parameter 15 =  . 

 

So the prediction of normalised current according to Albery (eqn.27) and the present work 

(eqn.26) are very similar when the catalytic kinetics are sluggish over a wide range of substrate 
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concentration, but when the kinetics are more rapid the  Albery expression over predicts the normalised 

flux by a factor of 20-35% over a significant range of   values.  

 
Figure 8. The variation of the normalised flux ratio with saturation parameter. Curves have been 

computed for various values of the reaction/diffusion parameter. 

 

Following on from our previous paper8 we note that eqn.7 can be written as: 

 
2

2

d d d

d d d 1

u u u u

u


   

   
=   

+  
  (28) 

Also we note that: 

 

2 2

2

d du du d
2

d d d d

u

   

   
=   

   
  (29) 

Hence we obtain: 

 

2

2

d d d
2

d d 1 d

d
2 d

d 1

u u u

u

u u
d u

u


   


 

   
=   

+  

   
=   

+  

  (30) 

Integrating we get: 

 ( )
2

2

0

d d 1
2 2 ln 1

d 1

u
u u u u

u
u

  
   

   
= = − +   

+   
   (31) 

Hence the normalised current is given by: 

 ( ) ( ) 2

2

1

d 1 1
2 ln 1 2 ln 1

d

u
y



      
  

=

   
= = − + = − +  

  
  (32) 
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Here we have assumed that d d 0u  =  when  0u = and 1u =  when 1 =   . This expression for 

the normalised current is valid under conditions where 1   and for large  3 . This expression 

corresponds to the situation where the inner region of the film is unsaturated whereas the outer region is 

saturated. We have shown previously8 that the line of demarcation between these two regions is set at 

some critical distance 
2

* 1





= −  . Complete saturation occurs when * 0 =  . This is the two region 

scenario. 

As previously noted8 we can identify four limiting cases of eqn.26 and also of eqn.27. The 

behaviour of the system can be well described in terms of a kinetic case diagram which is a plot of log  

versus log  . This case diagram is outlined in fig .9. One limiting case arises when the catalytic kinetics 

are saturated. Hence 1    and we note that the normalised flux reduces to: 

  tanhy     (33) 

This expression combines two limiting cases. Case I pertains when the catalytic kinetics are 

slower than substrate diffusion and 1   . Hence tanh    and eqn.33 reduces to: 

 y    (34) 

Translating back  into dimensioned quantities we obtain: 

 ( )c Mi nFA k K e L s 

=   (35) 

Hence the amperometric current response is first order with respect to substrate concentration, 

catalyst concentration, and layer thickness. The reaction occurs uniformly throughout the film. On the 

other hand when 1   the reaction kinetics are rapid and we note that  tanh 1   and eqn.33 reduces 

to: 

 y     (36) 

This corresponds to case II. Under these circumstances KL X  the layer thickness is much 

greater than the kinetic length and so reaction occurs in a thin reaction layer at the outside of the film. 

This will pertain when the reaction kinetics between substrate and catalytic sites occur rapidly. Hence 

the current response is given by: 

 ( ) 1/2c S
c M K

M

k D
i nFA k K e X s nFA e s

K
  

 = =   (37) 

 
3 Specifically this solution will be valid when 1   but 2   . 
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Figure 9. Kinetic case diagram illustrating the four kinetically limiting situations described in the text. 

 

Here the current again is first order in substrate concentration, and half order with respect to 

enzyme concentration. Furthermore, the current is independent of layer thickness L and occurs in a thin 

reaction layer of thickness KX  . Note that eqn.33 joins the two cases I and II. When 1   then Ms K  

and the catalytic kinetics are saturated. Hence the normalised current adopts the following form which 

is valid   : 

 tanhy
 


 

 
  

 

  (38) 

When   is small then / 1    and tanh      
 

 and so the normalised current 

reduces to: 

y                      (39) 

This expression defines case III. Here the catalytic kinetics are more sluggish than substrate 

diffusion and the substrate concentration is the film is larger than the Michaelis constant for the catalytic 

reaction. Hence the current response for case III is: 

 ci nFAk e L=   (40) 

Hence the rate determining step involves the decomposition of the catalyst/substrate adduct to 

form products. This occurs throughout the entire thickness of the immobilized film. The current is zero 

order in substrate concentration and first order with respect to catalyst and layer thickness. Finally when 

1   and the catalytic kinetics are rapid then eqn. 38 reduces to: 

 y    (41) 

This defines case IV where both the catalytic kinetics are rapid and the substrate concentration 

in the layer is larger than the Michaelis constant. Under these circumstances the current response is given 

by: 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

6074 

 ( ) 1/2 1/2

c M K c Si nFA k K c X s nFA k D e s  

 = =   (42) 

In case IV the current is half order with respect to substrate concentration in the layer, is half 

order with respect to enzyme loading and occurs in a thin reaction layer adjacent to the film/solution 

interface. Hence cases II and IV are connected via the following expression: 

 
1

y






+

  (43) 

This expression is obtained from eqn.26 by assuming 1 +  is large and so we note that 

tanh 1 1  + 
 

. In the kinetic case diagram cases II and IV are separated by the line  =  located 

in the top right hand quadrant. Case IV pertains when one has thick catalytic layers and when the kinetics 

are saturated when s >> KM. Under such circumstances one may expect that the outermost regions of the 

film will be completely saturated whereas the inner regions of the film are unsaturated.  

 

Table 1. Limiting kinetic cases. 

 
Case Normalised current Steady state current 

I y =   ( )c Mi nFA k K e L s 

=   

II y  =   ( )c M Si nFA k K e D s 

=   

III y =   
ci nFAk e L=   

IV y =   
c Si nFA k e D s 

=   

V 
y




=   ( ) 1

c M Ii nFA k K e LK w s− 

=   

VI 
y





=   c S I

M

k e D K
i nFA s

K w
 =  

VII 
y




=   

1

c Ii nFAk e LK w−

=   

VIII 
y




=   c S Ik e D K s

i nFA
w

 

=   

IX 
y




=


  

1

c Ii nFAk e K w s− 


=   

X 
y




=


  c S Ik e D K s

i nFA
w

 




=   

 

When the kinetics are sluggish then   is small then ( )tanh 1
1


 



 
 + 

+ 

 and  the 

general  eqn.26 reduces to: 

 
1

y





+
  (44) 
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This expression can be seen to join cases I and III. This is just a normalised form of the Michaelis 

Menten equation. It will be valid for thin films where there is very little concentration polarization of the 

substrate in the film and where the reaction kinetics are rate determining. We present a summary of the 

key kinetic cases and equations in table 1 and a reaction order summary in table 2. 

 

Table 2. Diagnostic Reaction orders. 

Case s   L   e   w   

I 1 1 1 0 

II 1 0 1/2 0 

III 0 1 1 0 

IV 1/2 0 1/2 0 

V 1 1 1 -1 

VI 1 0 1/2 -1/2 

VII 0 1 1 -1 

VIII 1/2 0 1/2 -1/2 

IX 0 1 1 -1 

X 1/2 0 1/2 -1/2 

 

We note that the Albery equation presented in eqn.25 reproduces the limiting kinetic case 

expressions for the normalised current for cases I, II and III. However for case IV corresponding to 

1, 0 2      ,  the limiting current is predicted to be : 

 2Ay    (45) 

Hence we see that the expression for the normalised current response in these circumstances is 

/ 2Ay y  or approximately 0.71 times that predicted by the Albery model.  

Now eqn.32 obtained via direct integration of the reaction/diffusion equation joins cases II and 

IV. We note that when 1    , then ( ) 2ln 1 2  +  −  and ( ) 2ln 1 2  − +   and the normalised 

current reduces to y    which is case II. Alternatively, when 1   then ln   and the 

normalised current reduces to 2y   which is  case IV and is the same as eqn.38. Hence case IV 

will be bounded by 1 2    rather than 1     as is predicted in our current approach. The 

governing expression for the steady state normalised current and the four kinetic sub cases are presented 

schematically in fig.10 below. Also included in this figure are the normalised current expressions joining 

the limiting kinetic cases. 
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Figure 10. Schematic representation of the relation between the general expression for the normalised 

limiting current and the four sub cases I-IV. Also included are the expressions joining the limiting 

subcases. 

 

We note that the limiting expressions for the normalised current can be used with experimental 

data to identify a particular rate limiting case. 

 

 

2.2. Mixed Inhibition Effects Operative. 

2.2.1. General Formulation Of The Problem 

We now consider the more complicated situation where product formation at the enzyme 

molecule is affected by the presence of an inhibitor species I. The  effect of substrate inhibition on the 

amperometric current response has been reported by Kulys and Baronas[21] and by Rajendran et al[22]. 

The former utilized a digital simulation to obtain the predicted current response whereas the latter 

utilized the Adomian Decomposition Method (ADM) to obtain the steady state amperometric current  

response. In the present communication we discuss the general situation of enzymatic biocatalysis 

exhibiting mixed inhibition according to the reaction scheme outlined below. 
M c

I

K k

K

K

S+E ES P+E

S+I EI

ES+I ESI

I



⎯⎯→ ⎯⎯→⎯⎯
⎯→⎯⎯

⎯→⎯⎯

     (46) 

Note that in noncompetitive inhibition the inhibitor binds to a site that is different from the 

substrate binding site. In mixed inhibition, the inhibitor also binds the enzyme at a site other than the 

active site, and, as with non competitive inhibition may bind whether or not substrate is already bound 
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at the active site. We introduce the following dissociation constants (both having unity of mol cm-3) of 

EI and ESI as follows: 

 

  
 

  
 

I

I

E I
K

EI

ES I
K

ESI

=

 =

  (47) 

And we also note that MK k k  since we assume that ck k   . It is well established using the 

steady state approximation that the rate of product formation is given by the following expression: 

 
d

d
1 1

c

M

I I

k e sp
R

t w w
K s

K K

= =
   
+ + +   

   

  (48) 

Here w  denotes the inhibitor concentration. In scheme I we indicate the form that the rate 

equation takes under various types of inhibition. We note that eqn.41 defines the most general situation 

when I IK K =  . Here we have non competitive inhibition. In contrast when I IK K   we get competitive 

inhibition and the pertinent rate equation is given by: 

 

1

c

M

I

k e sdp
R

dt w
K s

K

= =
 
+ + 

 

  (49) 

Clearly this pertains when 1Iw K    . On the other hand when I IK K   then we obtain the 

uncompetitive limit with a characteristic rate expression given by: 

 

1

1

c

I

M

I

k e s

w

Kdp
R

Kdt
s

w

K



 
+ 

 = =

+
 
+ 

 

  (50) 

In a thin conductive polymer film the pertinent reaction/diffusion equation when we adopt the 

general inhibition expression presented in eqn.41 is given by: 

 
2

2

d
0

d
1 1

c
S

M

I I

k e ss
D

x w w
K s

K K

− =
   
+ + +   
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  (51) 

Hence we see that for mixed inhibition both the substrate concentration and the Michaelis 

constant MK  are affected by the mediator concentration w  . Note that we assume that the diffusion of 

the inhibitor within the film can be neglected. 

We again introduce the following normalised variables:  

 

2

c

M M S

I I I I

k e Lx s s w
u

L K s K D s

s s w w

K K K K


   

 

 
      





 

 

= = = = =

  = = = = = =
 

  (52) 
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In the latter expression   denotes the normalised inhibitor concentration in the film, and ,    

compare the inhibitor concentration in the film with the respective dissociation constant values for EI  

and ESI  respectively as outlined in eqn.47, whereas ,   are parameters which compare the bulk 

concentration of the substrate in the film with the respective dissociation constants of the same inhibitor 

complexes.  

It can be readily shown that the reaction/diffusion equation reduces to: 

 
( )

2

2
0

1 1

d u u

d u



    
− =

+ + +
  (53) 

This can be written in an alternative manner as follows: 

 
( )

2

2
0

1 1

d u u

d u



   
− =

+ + +
  (54) 

This equation is subject to the following boundary conditions: 00 0du d u u = = =  , and 

when 11, 1u u = = =  and so we again assume that concentration polarization of substrate in the 

solution can be neglected and that  the film is electronically conducting. As before we can assume a 

general solution of eqn.47 of the following form: 

    cosh sinhu A B = +   (55) 

From the boundary conditions we arrive at the following result for the concentration distribution 

of substrate in the thin film: 

 ( )    0sech cosh coshu u   = =   (56) 

Also we note that 

 
1

sech sinh tanh
du

d
    



 
= = 

 
  (57) 

Hence the normalised current response under steady state conditions is given by: 

 
1

tanh
M S

iL du
y

nFAK D d
  



 
= = = 

 
  (58) 

Following the AGM as outlined in the previous section we can readily show that: 

 

1 1 1 1

 


 
    

 

= =
    

+ + + + + +   
   

  (59) 

Hence the concentration profile of substrate in the film is given by: 

 ( ) 0 cosh

1 1

u u





 


 
 
 =
  

+ + +  
  

 (60) 

Where we note that the substrate concentration at the support electrode surface is given by: 

 0 sech sech

1 1

u





 


 
 
 = =
  

+ + +  
  

  (61) 
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The substrate concentration distribution within the conductive layer defined by eqn. 60 with the 

value of 0u  the substrate concentration at the support electrode surface defined by eqn.61 is outlined in 

figure 11. In these  calculations the reaction/diffusion parameter was fixed at 20 =  and a range of  

values of the non-competitive  inhibition factors were adopted (0,0.5, 1, 5 and 10) such that   = . 

These calculations were run for three characteristic levels of substrate concentration with 

0.1, 1, 10  = = =  respectively (fig.11A,B and C ). We note the very marked effect of inhibition: the 

value of substrate concentration at the electrode surfaces increases significantly as the degree of 

inhibition increases for any value of the saturation parameter ranging from unsaturation to complete 

saturation. In these calculations a reasonable large value of the reaction/diffusion parameter was adopted 

corresponding to rapid substrate diffusion compared with substrate/enzyme reaction. 

 Furthermore, we can show that the normalised current is given by the following expression: 

tanh

1 1 1 1

y
 


 

   
 

 
 
 =

     + + + + + +        

   (62) 
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Figure 11. Substrate concentration profiles computed using eqn. 60 illustrating the effects of mixed 

inhibition on the substrate distribution profiles in the film. Substrate diffusion is significant. 

Panel A illustrates substrate/enzyme kinetics unsaturated where 1   . In panel B 1 =  , and 

in panel C the reaction kinetics are saturated with 1   . 

 

This is the general solution for the normalised current when non-  competitive inhibition pertains. 

It should reduce to the less general forms of inhibition in the appropriate limit.  

For instance when 1   so     which implies that ( )1 1I IK K   which 

suggests that the formation of the ESI complex is not as favoured as EI complex formation . Under these 

circumstances eqn.62 reduces to: 

 tanh
1 1

y
 


   

 
=  

+ + + + 

  (63) 

This expression describes the steady state normalised current response for competitive inhibition 

(the latter being described by the parameter  =  . On the other hand if 1   then eqn.62 

reduces to: 

 
( ) ( )

tanh
1 1 1 1

y
 


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 
  

 + + + +  

  (64) 

This describes uncompetitive inhibition. Furthermore, if   =  then eqn.62 reduces to: 

 

( )( ) ( )( )

tanh

1 1 1 1

tanh
1 1 1 1

y
 


 
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 

 


   

 
 
 

    
+ + + + + +        

 
  

+ + + +  

  (65) 

This is the desired current response for non-competitive inhibition under steady state conditions 

where substrate diffusion is taken into consideration. 
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Figure 12. Variation of the normalised current y with saturation parameter. The curves were computed 

using eqn.65 at a fixed value 20 =  using eqn.65 for the inhibition factor values indicated. 

 

In figure 12 the normalised current response for non-competitive inhibition is presented. The 

contrast with the simple Michaelis-Menten response in the absence of inhibition is quite clear. The 

transition between linear unsaturated kinetics and the zero order unsaturated region becomes manifest at 

lower saturation parameter values as the extent of inhibition increases. Furthermore the steady state 

plateau current response decreases significantly as the level of inhibition increases.  

 
Figure 13. The variation of normalised current response with reaction/diffusion parameter for a 

saturation parameter 1 =  . The curves are computed using eqn.65 using the inhibition factor 

values indicated. 

 

In figure 13 the variation of normalised current with the reaction/diffusion rate ratio is outlined. 

The curves in both the absence and presence of inhibition are compared. Inhibition clearly depresses the 

normalised current response for a fixed   value. The calculations presented in fig.13 were performed 
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by assuming that 1 =  which is just at the border between unsaturated and saturated kinetics. Similar 

profiles were derived for pure unsaturated kinetic conditions where 0.1 =  , and saturated kinetic 

conditions where 10 =  . The general shape of the response curves were similar to those outlined in 

fig.13. 

 

2.2.2. Limiting Kinetic Cases. 

From these general expressions we may readily derive 10 limiting cases. Turning to eqn.62 when 

( )1 1     + + +   then 

 
( )

2

1 1
y




   
 =

+ + +
  (66) 

This general expression produces four cases, and is identical to the expression obtained by 

invoking the thin film approximation where substrate diffusion effects through the film are ignored by 

setting 1u   in the governing reaction/diffusion expression. We initially assume that 1    in the 

denominator of eqn.66 then eqn.66 reduces to: 

 
( )1 1 1

y
 

    
 =

+ + + +
  (67) 

Now when 1    then eqn.67 reduces to eqn. 44 which describes the join between kinetic 

cases I and III in the absence of inhibition effects. Case I corresponds to the situation where 1   and 

case III the converse, where 1  , saturated enzyme/substrate kinetics are rate limiting, the normalised 

current  y   and the steady state current response is given by eqn.40.  In contrast, when 1    

where inhibition is important eqn.57 reduces to: 

 
1

y





+
  (68) 

This expression pertains to competitive inhibition (CI). This defines a case I/V situation. When 

1   and still    eqn.68 reduces to case I discussed previously with y   , where the 

enzyme/substrate kinetics are unsaturated, and the current response is given by eqn.35. In contrast when 

competitive inhibition effects are significant and 1  ,  we obtain the case V scenario: 

 y



   (69) 

Here the current response is given by: 

 c I

M

k e LK s
i nFA

K w

 

=   (70) 

For case V the enzyme/substrate kinetics are again unsaturated and inhibition is manifested by 

the inverse proportionality between inhibitor concentration w and current response. The reaction order 

is 1 with respect both to enzyme loading and layer thickness.   

When 1   then eqn.59 reduces to: 

 
( )1 1

y


  


+ +
  (71) 
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This expression pertains when inhibition is uncompetitive (UC). Again when 1    eqn.64 

reduces to eqn.44 defining a I/III case. In contrast when     eqn.71 reduces to: 

 
1

y





+
  (72) 

This expression joins cases I and IX. When 1    uncompetitive inhibition effects can be 

disregarded and eqn.65 reduces to case I again. In contrast when 1   then we get case IX  in which 

the normalised current is given by: 

 y






  (73) 

Hence the net current response is 

 c InFAk e LK
i

w




=   (74) 

Here the enzyme/substrate kinetics are saturated and the current is zero order in substrate 

concentration. The current is first order with respect to enzyme loading and layer thickness, and inversely 

proportional to inhibitor concentration as we would expect. 

All of the cases considered so far, I, II, V and IX correspond to the situation where the 

concentration profile throughout the layer is uniform or nearly so. Diffusion will be fast and reaction 

kinetics slow and rate determining. Under such circumstances reaction occurs throughout the entire film 

of thickness L.  We now turn to the opposite situation when reaction kinetics are facile. This will be the 

case when ( )1 1     + + + . Here we get: 

 
( )1 1

y


 
   

 =
+ + +

  (75) 

Again we can identify some limiting kinetic cases. We assume 1    which suggests 

competitive inhibition and so the normalised current response reduces to: 

 
( )1 1

y



  


+ +

  (76) 

If we can neglect competitive inhibition then 1    and we obtain eqn.43 again which 

describes the join between cases II and IV. When 1   we get y    and the current response is 

given by eqn.37. Here the current is first order in substrate concentration, half order in enzyme loading, 

and is independent of the layer thickness. In contrast case IV pertains with y   when 1   and 

the current response is described by eqn.42, where the reaction order is half order with respect to enzyme 

loading and substrate concentration. Again the current is independent of layer thickness. Conversely, 

when 1   then competitive inhibition effects are operating and eqn.76 reduces to: 

 
1

y






+

  (77) 

This expression defines the join between cases II and VI. When 1    we again get case II. 

When 1   the normalised current reduces to 

 y





   (78) 
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This defines case VI. The current response under these conditions is given by: 

 c S I

M

k D e K
i nFA s

K w
 =   (79) 

Hence the reaction order is first order with respect to substrate concentration, half order with 

respect to enzyme loading and negative half order with respect to inhibitor concentration., and zero order 

with respect to layer thickness. Hence the enzyme substrate kinetics are unsaturated and occur within a 

thin reaction layer located within a zone adjacent to the film/solution interface. 

Returning to eqn.75 we focus attention on the case where 1    .  This corresponds to the 

situation where competition is uncompetitive. Hence eqn.75 reduces to: 

 
1

y






+

  (80) 

This expression defines the join between cases II and X. When 1    uncompetitive inhibition 

is not an issue and we obtain case II described previously for ordinary Michaelis Menten kinetics. In  

contrast when 1   then case X pertains and the normalised flux is given by: 

 y






  (81) 

In this case the current response is given by: 

 

 c S Ik D e K s
i nFA

w

 




=   (82) 

Here the reaction kinetics are half order with respect to enzyme loading and substrate 

concentration, are zero order with  respect to layer thickness and inverse half order with respect to 

inhibitor concentration. 

Finally we look at non-competitive inhibition where   =  and the expression for the 

normalised current is given by eqn.65. When ( )( )1 1   + +  we obtain: 

 
( )( )1 1

y


 
=

+ +
  (83) 

When 1   eqn.83 reduces to eqn.44 defining a join between cases I and III. In contrast when 

1   eqn.83 reduces to: 

 
( )1

y


 


+
  (84) 

This expression defines the join between cases V and VII. When 1   we obtain eqn.69 again 

which defines case V. In contrast when 1  we get 

 y



   (85) 

This defines case VII. Here the current response is given by: 

      c InFAk e LK
i

w

=       (86) 
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Here the substrate kinetics are unsaturated and inhibition is operative. The reaction occurs 

throughout the entire layer. The kinetics are zero order in substrate, first order in enzyme loading, first 

order with respect to layer thickness and the rate is  inversely proportional to the inhibitor concentration. 

Finally when ( )( )1 1   + + then  we get: 

 
( )( )1 1

y



 


+ +

  (87) 

When 1   then eqn.87 reduces to eqn.43 outlined previously which joins cases II and IV. 

When 1   we get 

 
( )1

y



 


+

  (88) 

This expression joins cases VI and VIII when non competitive inhibition operates. When 1   

we get 

 y





   (89) 

This defines case VI. In this situation the current response is given by: 

 c S I

M

k e D K
i nFA s

K w
 =   (90) 

Here the enzyme/substrate kinetics are unsaturated and non competitive inhibition operates. The 

reaction takes place in a thin reaction layer. The kinetics are first order in substrate concentration and 

half order in enzyme concentration. The kinetics are zero order in layer thickness and are negative first 

order with respect to inhibitor concentration. In contrast when 1   we get case VIII and note that: 

 y



   (91) 

Here the current response is given by: 

 S c ID k e K s
i nFA

w

 

=   (92) 

In case VIII the enzyme/substrate kinetics are saturated. Non competitive inhibition operates. 

The reaction rate is independent of substrate concentration, is negative half  order with respect  to 

inhibitor concentration , is independent of layer thickness and is half order with respect to enzyme 

loading. In conclusion we note that non-competitive inhibition is associated with 8 cases: I, II, III, IV, 

V, Vi, VII and VIII. Competitive inhibition is associated with 6, namely I,II,III,IV,V, VI. Uncompetitive 

inhibition is also associated with 6 cases namely I,II,III,IV,IX,X. We gather together all of the 10 limiting 

cases developed in the paper in Table 1, and in table 2 diagnostic reaction orders with respect to substrate 

concentration, enzyme loading, layer thickness and inhibitor concentration are presented. Determination 

of these quantities will enable case identification to be established using experimental data. 

In figure  14 we illustrate the interconnection between the expressions derived for the limiting 

current response when the different inhibition models operate. 

 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

6086 

 

 

Figure 14. Schematic representation of the characteristic normalised current response for the various 

inhibition types. 

 

 

In the analysis presented in this paper we have neglected the effect of concentration polarization 

in the solution. This can, of course be ensured experimentally by using the rotating disc electrode and 

by extrapolating the current data to infinite rotation speed. This is done using the well established 

Koutecky Levich plot in which inverse current is plotted as a function of inverse square root of rotation 

speed as follows: 

 1/2

KL KL

nFA
I S

i
−= +   (93) 

The Koutecky –Levich intercept is given by the inverse reaction flux corrected for the effect of 

mass transport in the external solution : 

 
1

KL

K

I
f

=   (94) 

Whereas the Koutecky-Levich slope is given by 

 2/3 1/61.55KL SS D s − =   (95) 

In the latter expression   represents the kinematic viscosity of the solution and SD  denotes the 

diffusion coefficient of the substrate in the solution as opposed to that in the layer. The mass transport 

corrected kinetic flux is directly related to the various limiting expressions presented in table 1 for the 

steady state current by noting that  

 
,K

i
f

nFA
→ =   (96) 

This procedure has been previously discussed by Lyons[1,2].  
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2.2.3. The Thin Layer Approximation (Tla). 

We finally focus attention of the Thin Layer Approximation where it is assumed that diffusion 

of substrate through the layer is not rate limiting.  This corresponds to a pure kinetic situation. Reaction 

occurs uniformly throughout the  thin film and we can assume that the substrate concentration profile is 

uniform throughout the layer and is given by 1u   . Under such circumstances eqn.54 reduces to: 

( )

2

2
0

1 1

d u

d



   
− =

+ + +
     (97)  

This equation is subject to the following boundary conditions: 00 0du d u u = = =  , and 

when 11, 1u u = = = . A first integration affords: 

 
 1 1

du
A

d




    
= +

+ + +
  (98) 

Whereas a second integration yields: 

 
( ) 

2

2 1 1
u A B


 

   
= + +

+ + +
  (99) 

We may readily show that : 0A =  and 
( ) 

1
2 1 1

B


   
= −

+ + +
 and note that the 

concentration profile of substrate is given by: 

 
( ) 

 2( ) 1 1
2 1 1

u


 
   

 − −
+ + +

  (100) 

Furthermore the normalised current response is given by: 

 
 1

1 1

du
y

d




    

 
= =  + + + 

  (101) 

One can readily show that the following general relationship pertains: 

 
( )

1 1 1 1
1

c M I I s c

nFA w w

i k K c L K K D L s k e L 

 

   
= + + +  

   

  (102) 

Hence we predict that for general inhibition in a thin film under pure kinetic conditions where 

substrate diffusion is fast a plot of nFA i  vs substrate concentration is linear with an intercept given by: 

 
1

TFA

c

I
k e L

=   (103) 

And slope given by: 

 
( ) ( )

1
1TFA

c M I I S

w w
S

k K e L K K D L 

 
= + + 

 
  (104) 

This  depends on the inhibitor concentration w  . When inhibition effects are absent eqn.102 

immediately reduces to the well established Linewaver-Burk equation. 
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Figure 15. Computations outlining the regions of validity of the thin layer approximation corresponding 

to pure substrate/enzyme reaction kinetics. 

 

 

Finally we can compare y  with TFAy  and show that: 

 
   

coth
1 1 1 1

TFAy

y

 

       

 
=  

 + + + + + +  

  (105) 
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This expression is outlined in figure 15 where we have set the yratio TLAy y=  . In these 

calculations we have computed this ratio, which quantifies how good the thin layer approximation is 

compared with the full expression for the normalised current, as a function of the saturation parameter 

for three different values of the reaction/diffusion parameter. In panel A 0.1 =  and reaction is slower 

than substrate diffusion through the layer. Here we would expect that pure kinetics are rate determining 

and so the TLA should approximate well to the full expression derived. This is indeed the case as 

illustrated in figure 15A. The effect of inhibition is also apparent. When inhibitor concentration increases 

the ratio improves and is close to unity over a wide range of substrate concentration values. In panel B 

calculations are  outlined, when diffusion and chemical reaction fluxes are equal. Good agreement 

between the thin film expression and the full expression is observed when the enzyme/substrate reaction 

kinetics are saturated, and when the substrate reaction kinetics are affected significantly by inhibition 

effects. Finally, in panel C we outline the situation where diffusion is significant and rate determining. 

Here the agreement between the two models is not at all good even when the substrate concentration in 

the film is significantly larger than the Michaelis constant of the enzyme/substrate reaction. Again, when 

inhibition effects are important the value of the current ratio is smaller over a large range of substrate 

concentrations. 

 

4. CONCLUDING COMMENTS. 

In this paper we have examined the problem of describing the transport and kinetics of  catalytic 

reactions in a bounded region such as a conductive  polymer modified electrode. The kinetics are 

modified Michaelis - Menten in type due to the presence of a generalised inhibition process. The relevant 

reaction/diffusion has been formulated and the AGM technique has been applied to obtain an analytical 

solution both of the substrate concentration profile within the film and the normalised amperometric 

current response which are valid over a large range of  values of substrate concentration. This analytical 

solution for normalised current response has been used to derive 10 useful limiting kinetic equations 

which can be used in experimental studies and which convey useful physical insight into the underlying 

physical chemistry of the system. Further work is currently ongoing to extend the analysis to the 

examination of transient reaction/diffusion and to the examination of reaction/diffusion at polymer 

coated thin films deposited on inlaid micro-discs.  
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