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Since the parameters of lithium-ion batteries are time-varying, employing a battery model with fixed 

parameters poses adverse effects to the accuracy of battery state parameter (e.g. state of charge (SOC) 

and state of health (SOH)) estimation. Thus, it is highly necessary to identify the battery model 

parameters online to improve the accuracy of battery model. In this study, a fractional-order equivalent 

circuit model of lithium-ion batteries is established based on second-order RC model and the parameters 

of the model are identified off-line by the mixed-swarm-based cooperative particle swarm optimization 

(MCPSO) algorithm. In order to take into account the parameter variations and improve the accuracy of 

battery model, the model parameters are updated online by the recursive least square (RLS) method to 

achieve model parameter online identification. Simulation results show that under different cyclic test 

conditions (i.e. HPPC, DST, and FUDS), the root-mean-square error (RMSE) values of the fractional-

order equivalent circuit model based on the real-time update of RLS parameters are less than 9 mV, and 

the average relative error does not exceed 0.1%, which has higher accuracy and good robustness. The 

results achieved in this study provide great potential for enhancing estimation accuracies of SOC and 

SOH for battery management systems (BMSs). 

 

 

Keywords: lithium-ion battery; fractional-order model; online parameters identification; recursive least 

squares 

 

1. INTRODUCTION 

As the energy source of electric vehicles (EVs), on-board power batteries are of vital importance 

to the EVs’ dynamic performance, economy, and safety, and they are also the critical factor that hinders 

the evolution of EVs [1-3]. So far, lithium-ion batteries have become the mainstream choice for EV 

power batteries; this is because these batteries provide the advantages of high energy density, low self-

discharge rate, long cycle life, and no memory effect [4-8]. Accurate and effective lithium-ion battery 
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models are of great significance for improving the estimation accuracy of SOC and SOH, and for 

facilitating the research on lithium-ion battery performance [9-13]. 

There exist three main types of lithium-ion battery models: the black box models, the 

electrochemical models, and the equivalent circuit models (ECMs) [14, 15]. The black box models 

employ the real vehicle running data to directly perform model training, which makes it conform to the 

current aging state of the battery. However, the model accuracy depends largely on the quality and 

quantity of the training data, and the battery operating conditions are complex and varying [16, 17]. As 

a result, the black-box models are not suitable for hybrid EVs and pure EVs. The electrochemical models 

better describe battery internal characteristics than other models, however they are composed of 

numerous equations and parameters, and the simulation accuracy of the battery under complex working 

conditions is low [18, 19]. The ECMs have been widely used, thanks to their advantages of simple 

structure, low number of parameters, and easy parameter identification [20-22]. The second-order RC 

model is a commonly used ECM, and it stands out from the integer-order models as it achieves a good 

trade-off between prediction accuracy and model complexity [23]. One drawback of the integer-order 

models is that the electrochemical response inside the battery cannot be well reflected. In view of this 

shortcoming, Ma et al. [24] used fractional-order impedance elements to further improve the integer-

order models. Wang et al. [25] pointed out that the models established by fractional calculus has higher 

accuracy, compared to the first-order RC model. This is because from the perspective of electrochemical 

impedance spectroscopy, a circuit composed of fractional-order elements can better fit the impedance 

characteristics of a battery, and thus has better applications in battery principle analyses, battery 

modeling, and state estimation [26, 27]. In this paper, a fractional-order ECM is established for lithium-

ion batteries, and its schematic is shown in Figure 1. 

The accuracy of a fractional-order ECM is dependent on the accuracy of its parameters. Since 

the battery is a time-varying nonlinear system, most parameters cannot be measured online, and the 

effectiveness of parameter identification is of special importance. Therefore, parameter identification 

has also become a key problem that is difficult to solve in the modeling process of lithium-ion batteries. 

At present, the methods for model parameter identification fall into three categories. The first category 

is the offline parameter identification methods which are based on offline data, such as linear fitting, 

least squares (LS) and other methods that cannot achieve identification in real time [28-30]. The 

parameters identified through offline identification schemes are generally fixed parameters that do not 

reflect changes in actual operating conditions. Such identification results are only applicable when the 

battery operating conditions do not change much. In practice, the variations of vehicle speed and battery 

temperature adversely affect the offline parameter identification results, which in turn leads to large 

errors in the SOC estimation results. Currently, online identification methods are the dominant methods 

for battery model parameter identification. These methods are mainly derived from LS, such as RLS [31, 

32], deviation compensation recursive least squares [33], and least squares derived algorithms with 

forgetting factors [34]. However, in the initial stage, the parameter identification results are still 

inaccurate. The third category of parameter identification methods is indeed a combination of the 

intelligent optimization algorithms (e.g. particle swarm optimization (PSO) [35] and genetic algorithms 

(GA) [36]) and the online identification methods. In this category, the intelligent optimization algorithms 

play a key role in parameter identification, with the online identification methods being complementary. 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

6865 

This type of parameter identification methods can overcome the inaccuracy in the initial stage of online 

parameter identification. Using the Levenberg-Marquardt method and the experimental data of the 

Galvanostatic charge-discharge conditions, Santhanagopalan et al. [37] identified the liquid lithium-ion 

diffusion coefficient, the solid-phase lithium-ion diffusion coefficient of the positive and negative 

electrodes, and the electrochemical reaction rate constant of the positive and negative electrodes in the 

quasi-2D mathematical model and the single particle model. The verification shows that when the 

ambient temperature is at 15 ℃ or 25 ℃, the model parameter identification is effective, and the model 

output voltage is highly fitted to the measured voltage. However, if the initial parameter is not selected 

properly, local optimum will appear and result in decrease of model accuracy. Based on the genetic 

algorithm and the battery model proposed by Doyle et al. [18] and Fuller et al. [38], Forman et al. [36] 

used lithium-ion battery cycle test data to identify  the model parameters, and employed the Fisher 

information matrix to evaluate the recognizability of the model parameters and the accuracy of the 

identified model. Finally, the precise of the model was verified by using the actual charging and 

discharging conditions of the battery. Rahimian et al. [29] used variable forgetting factor recursive least 

squares method based on the first-order RC ECM for parameter identification of the external input 

autoregressive model, which solved the problem that with the increase of recursive steps, the 

accumulated old data gradually increased, making it difficult to modify the new observation data and 

weakening the effect of parameter updating. 

In summary, most existing battery model parameter identification methods are off-line solutions, 

that is, the identified parameters are invariant. However, in practice, the battery operating current is large 

and changes rapidly, and the parameter identification accuracy is difficult to be ensured. In addition, the 

model order and the battery polarization depth are closely related, and the model parameters change with 

SOC, operating conditions, and internal resistance. As a result, using fixed model parameters can lead 

to large estimation errors. In order to improve the model accuracy and the system adaptability, it is highly 

necessary to perform online correction and update of the battery model parameters. 

The remainder of the paper is structured as follows. A fractional-order ECM is established for 

lithium-ion batteries based on the second-order RC model in Section 2. Section 3 describes the off-line 

identification method of model parameters based on MCPSO algorithm and the on-line identification 

method based on RLS method. In Section 4, based on the experimental data of FUDS working 

conditions, MCPSO algorithm is employed to identify the parameters offline, and the initial values of 

model parameters are obtained. Next, the accuracy of parameter identification is verified under different 

working conditions, considering that the parameters such as internal resistance of batteries change with 

time in practical use, the parameters identified are updated online by RLS method to realize online 

identification of model parameters, and the accuracy of offline identification and online identification of 

model parameters is compared and analyzed. Finally, conclusions are given in Section 5. 

 

 

2. MODELING OF LIYHIUM-ION BATTERY 

The schematic of the fractional-order ECM is shown in Figure 1, where 
OCVU  indicates the 

battery open circuit voltage (OCV), 
dU  is the battery terminal voltage, the current is denoted by I , the 
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Ohmic internal resistance is represented by 
0R , 

1R  and 
2R  represent the polarization internal 

resistances, 
1CPE  and

2CPE  are the constant phase elements, and the Wahlberg element is represented 

by W . 

 

 

Ud+
- Uocv

R0

R1 R2

CPE 1 CPE 2

I

W

 
 

Figure 1. Schematic of fractional-order ECM. 

 

 

The lithium-ion battery is modeled based on the fractional calculus theory [39], and the lithium-

ion battery transfer function of the fractional-order model impedance is presented as follows: 

1 2
0
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( ) ( ) 1

( ) 1 1
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where 
1C , 

2C , and W  represent the parameters of model elements, the fractional orders of the 

1CPE  and 
2CPE  elements are denoted by  and  , and   represents the Walberg element fractional 

order. 

In the time domain, the input to the system is ( ) ( )u t I t= . The output is ( ) ( ) ( )d OCVy t U t U t= − . Then 

the fractional calculus equation of this system model is as follows: 
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where parameters D , D , D , D + , D + , D + , and D  + +  are fractional-order operators. 

According to the derivation process in reference [39], equation (2) can be transformed to the 

following first-order difference equation: 
(1) 1 (0) (1)

( ) ( 1) ( ) ( 1)
(0) (0) (0)

A B B
y k y k u k u k

A A A

+
= − − + + −                （3） 

We modeled lithium-ion batteries using fractional calculus theory, as shown in equation (4): 

( ) ( )1

n

D SOC t u t
C


=                                (4) 

In this equation, the battery rated capacity is denoted by 
nC , and the battery coulomb efficiency 

is represented by  . 

The system state equation (4) can be discretized as follows: 
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(k) (k 1) (k)
n

T
SOC SOC u

C


= − +                              (5) 

where T denotes the sampling time. 

Equations (3) and (5) can describe the fractional-order ECM of lithium battery. Through the 

above analysis, the parameters that the model needs to identify are given in equation (6): 

0 1 1 2 2[R R C R C W ]   =                         (6) 

 

 

3. IDENTIFICATION OF FRACTIONAL MODEL PARAMETERS 

Because the lithium-ion battery is a time-varying nonlinear system, it is difficult to identify 

parameters in the battery modeling process. The LS method is based on the principle of minimizing 

variance, and it is a commonly used mathematical optimization tool. By means of the LS method, the 

unknown parameters of the system can be quickly obtained based on the established system model, and 

the sum of squared error between the measured value and the output value of the system model with the 

identified parameters is minimized At a certain temperature, if the voltage and current data of the battery 

for charging and discharging is available, the batch-type LS can be employed to identify the parameters 

of the battery model in one go. However, the computation load of the batch-type LS method is very 

large, which makes it suitable only for offline parameter calculation. Through the recursive processing 

of LS method, the RLS method can be used for the recursive calculation according to the sampling order, 

and it can be used for online parameter identification. The principle of RLS method is that the parameter 

estimate at the previous step and the new measurement are used to calculate the parameter estimate at 

the current step. By this means, the parameter estimate is continuously updated through recursion. The 

RLS is an algorithm that provides the optimal solution of the state equation, by using the data obtained 

from the input and output of the system through the dynamic linear system state equation. It is a 

parameter identification method with real-time properties that can be used to update the model 

parameters of the system [40], moreover, the data needed to be stored is small and the program is simple 

and easy to implement. Therefore, the RLS is used to update the fractional-order model parameters of 

lithium-ion batteries in this paper. However, the RLS may produce inaccurate results in the initial stage 

of parameter identification. The intelligent optimization algorithms, e.g. GA [36], PSO [35], bacterial 

foraging optimization (BFO) algorithm [41] and other algorithms, which can solve nonlinear and multi-

parametric problems, and the parameter identification results are accurate. Compared with GA and BFO, 

the PSO algorithm is more effective in utilizing processor memory, easier in application and 

implementation [42]. Hu et al. [23] employed the multi-particle swarm optimization algorithm to identify 

battery model parameters over the entire battery operating conditions, and the results showed high 

accuracy and stability. In this study, PSO is improved by adding differential evolution strategy, as 

suggested in Ref. [43], to promote best-performing particles and improve global optimality. Therefore, 

the MCPSO intelligent optimization algorithm is used to perform offline parameter identification before 

online parameter identification is conducted. By this means, the drawback of inaccurate identification in 

the initial stage of online parameter identification can be overcome. 

In order to identify the model parameters, the A123 ternary lithium-ion soft pack batteries were 

selected as the experimental objects at an ambient temperature of 25 ℃. Table 1 shows the battery 
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specifications. Using the available lithium-ion power battery test platform (shown in Figure 2), a series 

of tests were performed.  Considering the trade-off between sampling accuracy and data storage load, 

the sampling time of the battery test system was set to 0.1 s. 

 

 

Table 1. Battery specifications. 

 

Capacity 

(Ah) 

Charging cut-off 

voltage (V) 

Discharging cut-off 

voltage (V) 

Charging cut-off 

current (A) 

Rated 

voltage(V) 

25 4.20 2.50 1.25 3.60 

 

 

 
 

 

Figure 2. Battery test platform, including incubator, battery test equipment, computer and experimental 

objects. 
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Figure 3. Fitted curve of OCV-SOC. 
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Firstly, the static capacity test (SCT) was performed to obtain the available capacity of batteries. 

Next, the hybrid pulse power characteristic (HPPC) test were used to obtain the OCV value at a particular 

SOC value. According to the empirical equation (7) [44], Figure 3 shows the connection between the 

OCV and the SOC were obtained by data fitting. The fitting parameters are shown in Table 2. Then 

based on the MCPSO algorithm, using the experimental data under federal urban driving schedule 

(FUDS) conditions, offline parameter identification was performed to obtain the initial optimal values 

of the fractional-order model parameters. The accuracy of the model was verified under the HPPC and 

dynamic stress test (DST) conditions. Finally, the model parameters were updated online in real time by 

using RLS, and the model parameters were identified online. The accuracy of the fractional-order model 

was verified under different cyclic test conditions (i.e. HPPC, DST, and FUDS). The flowchart of online 

recognition of model parameters based on RLS is shown in Figure 4. 

0 1 2 3 4

1
( ) ln( ) ln(1 )OCVU SOC C C SOC C C SOC C SOC

SOC
= + + + + −              （7） 

 

 

Table 2. OCV-SOC fitting curve parameter table. 

 

C0 C1 C2 C3 C4 

2.9520 0.9987 -0.0518 -0.3995 -0.0857 

 

 

 
 

Figure 4. Flow chart of online identification of model parameters based on RLS. 
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3.1. Offline identification of model parameters 

Fractional 

order model

Lithium-ion 

battery

Objective 

function

MCPSO

Ij

 



 
( , )d jU I 

 

 ( )dU j

 
 

Figure 5. Block diagram of model parameter identification. 

 

 
 

Figure 6. Flow chart for model parameter identification based on MCPSO. 

 

 

The following equation is the objective function for parameter identification: 

( )
2

θ
1

min (I , )
Ndata

dd j

j

e U j U 
  

=

   
= −      
                         (8) 
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In the equation, the fitness function is represented by ( )e 


, 


 is the model parameter vector to 

be identified (defined in equation (6)), the battery voltage measured at the j-th sample point is denoted 

by ( )dU j , ( , )d jU I 
 

 is the battery voltage estimated based on the identification model output terminal 

given the input current jI  and model parameter


. 

To minimize the error between the model estimated voltage ( , )d jU I 
 

 and the battery voltage 

( )dU j , the parameter vector 


 in the fractional-order model is identified through MCPSO. Figure 5 

shows the specific identification block diagram. 

 

 

Table 3. Algorithm parameter. 

 

Dimension Size Cooperative time 

9 150 4 

Maximum number of 

generations 

Inertia 

weight 

Acceleration 

factor 

400 0.8-0.3 1.5381 

 

The parameters of the model to be identified are given by equation (6). Figure 6 shows the flow 

chart of the model parameter identification algorithm based on MCPSO, the specific steps of the 

algorithm can be found in [39], and the algorithm parameters are shown in Table 3. 

The inertia weight decreases linearly from 0.8 to 0.3, and the decline equation is given by: 
0.3

=0.8
maxgen

t
 −                                   (9) 

where t  denotes the number of current running generations,   represents the inertia weight, and 

the maximum number of generations is represented by maxgen. 

 

3.2. Online parameters identification based on RLS 

During actual vehicle operation the battery operating current is large and changes rapidly, which 

makes it difficult to guarantee the accuracy of model parameter identification. Therefore, battery models 

and their parameters are normally obtained by offline testing on a test platform before leaving the factory. 

Practical experience has indicated that the order of the battery model is closely related to the polarization 

depth, and the model parameters change with SOC, operating conditions, and aging parameters [45]. As 

a result, using fixed model order and parameters for battery state estimation can lead to large errors. As 

a result, in this section, the model parameters are adjusted in real time by means of RLS, thereby 

achieving model parameter online update. 

According to equation (3) - the fractional equivalent circuit model difference equation, the input 

( )u k  and output ( )y k  of the system are extended to n dimensions. A matrix equation can be obtained 

as equation (10): 

( ) ( ) ( ) ( )TY k k k e k=  +                             (10) 
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where ( )Y k  represents the observed value, ( )k denotes the parameter matrix, ( )k is the 

estimated value of the parameter matrix, and ( )e k  is the measurement noise. The definitions of ( )k  

and ( )k  are given by equation (11), and k  denotes the current moment. 

1 1 1

1 1 1
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( 1) ( ) ( 1)

(1) 1 (0) (1)
( ) ( 1) ( )

(0) (0) (0)

( ) ( ) ( 1)
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k k k

k k k

k k k

k k k

k n k n k n

k n k n k n

A B B

A A A
y k u k u k

A B B
y k u k u k

A A A

y k n u k n u k n
A B B

A A A



+ + +

+ + +

+ + +

+ + +

+

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 + 
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  = =
 
 
− + + + − 

+



M M M
M M M

[ ( 1) ( 2) ( )] [ ( 1) ( 2) ( )]Y y k y k y k n e e k e k e k n






 
 
 
 
 
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= + + + = + + +L L

        (11) 

At time 1k −  and k , the parameter estimation results obtained by the system are expressed by 

equation (12): 
1

1

ˆ( 1) ( ( 1) ( 1)) ( 1) ( 1)

ˆ( ) ( ( ) ( )) ( ) ( )

T T

T T

k k k k Y k

k k k k Y k





−

−

− =  −  −  − −

=   
               (12) 

At the k-th recursion, the parameter estimate ( )1k


−  at time 1k − , the new observation vector 

( )1k −  and the actual measurement ( )y k  have been obtained. New identification parameter ( )k  

is obtained by formula (13). 
1( ) ( -1) ( 1)[1 ( 1) ( 1) ( 1)]

(k) [I ( ) ( 1)] (k 1)

ˆ ˆ ˆ(k) (k 1) ( )[ ( ) ( 1) (k 1)]

T

T

T

K k P k k k P k k

P K k k P

K k y k k

  



   

− = − + − − −


= − − −


= − + − − −

               (13) 

where ( )K k  denotes a gain vector and ( )P k  is defined as ( )
1

T

k k

−

  . 

 

Start

Calculate ζ(0)according to the 

parameters recognized by MCPSO 
giving the initial value P(0) 

Judgment of terminating 
conditions

End

Y

N

Update  P(k) ,  K (k)  and  according 

to formula(13) 

Generate input data current u and 

output voltagy
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Figure 7. Flow chart of model parameter updating algorithm. 
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The data needed to be stored is small and the program is simple and easy to implement when the 

RLS is employed to update the parameters in time. Therefore, the fractional-order model parameters are 

updated by RLS for lithium-ion batteries in this paper. Figure 7 shows the flow chart of model parameter 

updating algorithm. 

 

 

4. SIMULATION VERIFICATION 

4.1. Results of offline parameters identification based on MCPSO 

The offline parameter identification of the battery model is based on the battery test data. Using 

the selected battery reference model and experimental test data, the model parameters are optimized 

through an optimization algorithm. The parameters are used in the later stage by looking up the table or 

using polynomial fitting. Therefore, in order to obtain accurate battery parameters throughout the battery 

life cycle, a large number of tests need to be carried out. This paper selects the FUDS test cycle data as 

the training data for the offline parameter identification. The charging and discharging current and the 

voltage response of the battery cell A123 under FUDS test cycle condition are shown in Figure 8. The 

initial battery SOC value is set to 0.65.Taking the FUDS operating current data as the input to the model, 

based on the MCPSO algorithm, the parameter identification of the fractional-order model is performed 

and the parameter identification results are shown in Table 4. 

 

 

 
 

Figure 8. The charging and discharging current and the voltage response of the battery cell A123 under 

FUDS test cycle condition 

 

 

Table 4. Fractional model parameter identification results. 

 

R0 R1 C1 R2 C2 

0.0125 0.0083 19.7142 17.8082 51.1029 

W α β γ  

155.7857 0.8386 0.2125 0.1668  
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The data in Table 4 is substituted into the established fractional-order model. By inputting the 

current and voltage data under the FUDS cycle test condition, the output voltage of the model is obtained 

and compared with the measured voltage, and the verification results of the fractional order model under 

the experimental data are shown in Figures 9. 

 

 

 
 

Figure 9. The verification results under the FUDS test cycle. 

 

Figure 9(a) demonstrates that the model output voltage is almost the same as the measured 

voltage, with the RMSE being 7.66 mV. It is observed in Figure 9(b) that the absolute error almost 

fluctuates within ± 10 mV, and only when the current changes obviously the error exceeds 20 mV. 

Besides, Figure 9(c) shows that the average relative error does not exceed 0.1%. In order to better 

reflecting the accuracy of the fractional-order model established in this study, it is summarized and 
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compared the model performances of the fractional-order model and reported models as previous 

reported, such as PNGV model [46], Thevenin model [47], second-order ECM [48]. And the terminal 

voltage errors comparison results are listed in Table 5. It shows that the fractional-order model has higher 

accuracy compared with the most reported models. In summary, the accuracy of the fractional-order 

model for offline parameters identification based on MCPSO is very high. 

 

Table 5. Comparison of terminal voltage errors. 

 

Battery models RMSE (mV) 

Fractional-order model 

PNGV model [46] 

Thevenin model [47] 

Second-order ECM [48] 

7.66 

35.70 

45.00 

19.00 

 

4.2. Accuracy verification of fractional order model for off-line identification of parameters 

 
 

Figure 10. The verification results under the DST test cycle. 
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In order to study the accuracy of the fractional-order model for offline parameter identification 

based on MCPSO under the condition of non-training data, the test data under the DST and HPPC 

operating conditions were selected to illustrate the robustness of the fractional-order model for offline 

parameter identification based on MCPSO. 

The battery is undergone the DST which is close to the actual vehicle running condition. The 

current and terminal voltage of the battery are measured. The battery test current is used as the model 

input, and the corresponding model output voltage is obtained. The initial SOC value of the lithium-ion 

battery is set to 0.9. The verification results under the DST condition is shown in Figure 10. 

Figure 10(a) shows that the model provides better fitting between the measured voltage curve 

and the output voltage curve. Figure 10(b) demonstrates that the absolute error is within ±10 mV, and 

Figure 10(c) shows that the relative error is within 0.4% with an average of 0.156%. Besides, the 

estimated RMSE is 8.61 mV, indicating that the model provides close results to the test data under the 

FUDS and DST operating conditions and presents high accuracy. 

 

Table 6. RMSEs for different test cycles based on MCPSO. 

 

Operating Condition HPPC DST FUDS 

RMSE (mV) 9.22 8.61 7.66 

 

The corresponding RMSE tables for different working conditions of fractional order model based 

on MCPSO are shown in Table 6. Although HPPC, DST and FUDS operating conditions’ currents have 

different frequency changes, Table 6 shows that the RMSE values of the model still don’t exceed 10 mV 

under different conditions, which proves that the fractional-order model for off-line identification of 

parameters proposed based on MCPSO in this paper has high accuracy and good robustness under 

different working conditions. 

 

4.3. Accuracy verification of fractional order model for on-line identification of parameters based on  

RLS 

During actual vehicle operation, the model parameters change with SOC, operating conditions, 

and internal resistance. As a result, using fixed model parameters can lead to large estimation errors. In 

order to improve the model accuracy and the system adaptability, it is highly necessary to perform online 

correction and update of the battery model parameters. 
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Figure 11. Comparison between measured voltage and output voltage. 
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Figure 12. Error between measured voltage and output voltage. 

 

Through the above analysis, the RMSE value of fractional battery model based on off-line 

parameter identification is less than 10 mV under different working conditions (i.e. HPPC, DST, FUDS). 

It shows that the fractional battery model based on off-line parameter identification has high accuracy 

under different working conditions already. Therefore, on this basis, the RLS method is used to update 

the parameters of the battery model on-line in real-time under different conditions such as FUDS, HPPC 

and DST (The initial SOC value of lithium-ion battery is set to 0.9), making it more suitable for varying 

operating conditions of real vehicles. Figure 11 shows a comparison between the model measured 

voltage and the output voltage under the FUDS cycle test condition. Figure 12 shows the error between 

the model measured voltage and the output voltage. 

Figure 11 shows that the proposed model provides better fitting between the output voltage curve 

and the measured voltage curve. As observed in Figure 12, the absolute error almost fluctuates within 

±10 mV. Compared with the fixed-parameter model error shown in Figure 9, the error in Figure 12 is 

more moderate. When encountered a large change in current, there is no sudden increase in error. The 

estimated RMSE is 6.37 mV, which is smaller than the RMSE which is 7.66 mV of the fixed-parameter 

model under the FUDS. Therefore, the accuracy of the proposed model for on-line identification of 

parameters has been further improved, and it is able to provide an accurate and stable terminal voltage 

for SOC estimation, and indirectly guarantee the accuracy of SOC estimation. 

 

 

Table 7. RMSEs for different test cycles based on RLS. 

 

Operating Condition HPPC DST FUDS 

RMSE (mV) 8.37 8.02 6.37 

 

The corresponding RMSE tables for different working conditions of fractional order model based 

on RLS are shown in Table 7. From this table, we can see that the corresponding RMSE values are 

smaller in different conditions when compared with Table 6. Under the HPPC cycle test condition, the 

RMSE value based on the RLS on-line parameter identification of the fractional-order model is 0.85 mV 

smaller than that based on the MCPSO off-line parameter identification. The RMSE value is reduced by 

0.59 mV under the DST cycle test condition, and 1.29 mV under the FUDS cycle test condition. 

Therefore, it is proved that the fractional-order model for on-line identification of parameters proposed 

based on RLS in this paper has high accuracy and good robustness under different working conditions 

when compared with off-line identification of parameters based on MCPSO. 
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5. CONCLUSIONS 

In order to effectively solve the problem of inaccurate identification in the initial stage of the 

online parameter identification process, in this study, the MCPSO intelligent optimization algorithm is 

first used to perform offline parameter identification. Then, the RLS method is used to realize online 

updating of model parameters. The online parameter identification model precisely predicts the changes 

of battery dynamic terminal voltage, with the absolute error being within 10 mV and the average relative 

error does not exceed 0.1%. Besides, this model effectively reduces the impacts of battery internal 

resistance and other parameters to improve the model accuracy. The simulation results show that the on-

line parameter identification method proposed in this paper for fractional-order battery model has higher 

accuracy, better robustness and practicability than the off-line parameter identification method under the 

same working condition, which provides great potential for enhancing estimation accuracies of SOC and 

SOH for BMSs.  
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