A Facile synthesis of the Nickel Oxide Nanoparticles for the Effective Electrochemical Detection of Hydrogen peroxide in Contact Lens Solution

Praveen Kumar G¹, Selvarasu Maheshwaran¹, Shen-Ming Chen^{1,*}, Muthumariappan Akilarasan¹, Tse-Wei Chen^{2,3,4}, Tien-Wen Tseng^{2,*}, Jaysan Yu⁴, Richard Yu⁴,

¹ Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan 106 (ROC). ² Department of Chemical Engineering and Biotechnology, National Taipei University of T

² Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC

³Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.

⁴ Well Fore special wire corporation, 10, Tzu-Chiang 7 rd., Chung-Li Industrial Park, Taoyuan, Taiwan *E-mail: <u>smchen78@ms15.hinet.net</u>, <u>f10403@ntut.edu.tw</u>

Received: 6 May 2020 / Accepted: 10 June 2020 / Published: 10 July 2020

Hydrogen peroxide (H_2O_2) was secreted in the mitochondria during the cell production. Moreover, H_2O_2 was act as a key member for reactive oxidative species. The imbalance of reactive oxidative species causes various health risks. Therefore, it is important to develop a device to detect H_2O_2 . Thus, nickel oxide nanoparticles (NiO NPs) were synthesized using the simple co-precipitation method for the detection of H_2O_2 . The morphological and chemical composition of the as prepared NiO NPs was characterized by using FESEM and XRD. Herein, we reported that the synthesized NiO NPs modified GCE shows a selective detection towards the H_2O_2 . Moreover, the NiO NPs/GCE has displayed wider covering range of 8.6 nM to 433.24µM with the detection limit up to 4.28nM. The NiO NPs/GCE has successfully examined with contact lens cleaning solution for the practical application for detection of H_2O_2 , which shows the appreciable found and recovery.

Keyword: Nickel oxide; H₂O₂ sensor; reactive oxidative species; electrochemical method; contact lens cleaning solution.

1. INTRODUCTION

Hydrogen peroxide (H_2O_2) has been widely used in biological and pharmaceutical industrial applications. Furthermore, H_2O_2 acts a key member for the production of reactive oxygen species[1]. Moreover, the H_2O_2 has been produced naturally in the living cell at the mitochondria, which regulates

the cell productions. Over secretion of H_2O_2 will leads to aging and several neurotransmitter diseases[2]. Therefore, it is essential to develop a cost-effective and eco-friendly device for determination of H_2O_2 . In recent, there are various techniques are used to monitoring the H_2O_2 level. However, electrochemical techniques are simple, rapid, easy to handle and cost effective[3]. While using the enzymatic sensors encounters various issues such as instability, easily affected by the environment, lack of durability and complicated immobilization procedures[4]. To overcome this, recently researcher had much interested to develop the non-enzymatic sensor based on the metal oxides[5].

In recent nanostructured, metal oxides have been widely used in the field of electrochemical sensors, supercapacitors, and solar cell applications[6]. Generally, transition metal oxides have been investigated more in the field of electrochemical sensor compare with rare earth metal oxide[7, 8]. However, the rare earth metals have some unique properties such as providing larger surface area, less size, and interfacial effects[9]. Among them NiO is a P-type semiconductor, so it has a wide range of electrochemical application[10]. Furthermore, the nickel oxide holds the wide range band gap of 3.6 - 4.0 eV and significant refractive index of 1.93 [11, 12]. Thus, considering the unique properties of NiO we have developed the electrochemical sensor based on it.

Herein, we reported the effective electrochemical sensor based on the NiO NPs for the H_2O_2 sensing. The NiO NPs modified nanomaterials shows the charger transfer resistance of R_{ct} of the 105.02 Ω . Furthermore, the NiO NPs/GCE significantly enhanced the detection of H_2O_2 , the as prepared sensor shows the remarkable performance in the real sample such as contact lens cleaning solution.

2. MATERIALS AND METHODS

Nickel nitrate hexahydrate (Ni(NO₃)₂.6H₂O) and Sodium hydroxide (NaOH), potassium hydroxide (KOH), hydrogen peroxide solution (H₂O₂), D (+)-glucose, L-ascorbic acid, folic acid, dopamine hydrochloride, uric acid and 3-Nitro-L-tyrosine were obtained from sigma-Aldrich and used without any further purification. Double distilled water was used for all the experiments. 0.1 M KOH was used as supporting electrolyte. Contact lens cleaning solutions were purchased from local pharmacy in Taipei city, Taiwan.

The surface modification of the as-formed composite was probed using field emission scanning electron microscope (FESEM-JEOL-7600F). PerkinElmer PHI-5702 investigated the quantitative analysis, defects, and disorder nature of the as-prepared composite and the XRD, XPERT-PRO spectrometer (PANalytical B.V.) was used to observe the crystallinity nature and purity of the composite. The electrochemical property and electrocatalytic activity were scrutinized using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and it-Amperometry were carried out using CHI 1205A. The CHI instrument consists of three electrodes system, whereas, the platinum wire and Ag/AgCl (sat. KCl) were used as an auxiliary and reference electrode and pre-washed GCE (glassy carbon electrode) act as a working electrode.

3. EXPERIMENTAL SECTION

3.1. Synthesis of NiO nanoparticles

The NiO NPs were synthesized using simple co-precipitation method. 0.5M of Ni(NO₃)₂.6H₂O was dissolved in 50 ml of distilled water and to the solution 1M NaOH were added slowly with vigorous stirring. The obtained precipitate was centrifuged and washed with water for several time to remove the Na⁺ ions and calcinated at 400° C for 2 h[13].

3.2. Preparation of NiO NPs modified GCE

The GCE surface was polished three repeated times with 0.5mg of Al_2O_3 slurry. Then, 1mg of synthesized NiO NPs was dispersed in 1 ml of ethanol and sonicated for 15 min. Finally, the 6µL of NiO NPs colloidal were drop-coated on the polished GCE surface and dried at 50^o C. The prepared NiO NPs/GCE was used for further electrochemical analysis.

4. RESULTS AND DISCUSSION

4.1. FESEM and XRD NiO NPs

The morphological structure of the synthesized nanomaterials was explored using FE-SEM. Fig. 1A-B displays the FESEM image of the NiO NPs with different magnification. In Fig.1A, particles are slightly agglomerates and arranged irregular shape. Further, the magnified FESEM image of the NiO NPs clearly shows that numerous particles are in sphere like structure as displayed in Fig.1B.

The synthesized NiO XRD pattern were displayed in Fig.1C it shows the characteristic peaks at $37.24^{\circ}(111)$, $43.27^{\circ}(200)$, $62.88^{\circ}(220)$, $75.41^{\circ}(311)$, $79.40^{\circ}(222)$. The obtained peaks were agreeing with the standard XRD of NiO (JCPDS No. 047-1049)[14]. The synthesized NiO belongs to the cubic crystal system. The crystalline size of the synthesized NiO and found to be 9.27nm using the Scherrer equation (1)[15].

$$\mathbf{D} = (\mathbf{k}\lambda/\beta\,\cos\,\theta) \tag{1}$$

Were D is the crystalline size of the particle(nm), k is the dimensionless shape factor (0.94), λ is the wavelength of X-Ray (1.54178Å), β was the Full width at half maximum of the diffraction peak (FWHW) and θ is the diffraction angle.

Figure 1. FE-SEM of NiO NPs (A-B) XRD spectrum of NiO (C)

4.2. EIS and Electrochemical study of different electrodes

The EIS spectrum for the bare GCE (a) and NiO NPs/GCE (b) were performed with the frequency range of 100MHz to 100KHz using 0.1M KCl containing 0.05M $[Fe(CN)_6]^{3-/4-}$ were shown on Fig.2A. The EIS Spectrum was fitted according to the Randle's equivalent circuit model displayed on inset Fig.2A were R_{ct}, Z_w, R_s and C_{dl} are charge transfer resistance, Warburg impedance, ohmic resistance and the double layer electron-transfer resistance. Further, the larger semicircle portion with the higher frequency obtained for the bare GCE and the R_{ct} value was measured to be 182.32 Ω . Moreover, the smaller semicircle region with the lower frequency obtained at NiO NPs/GCE and it R_{ct} value was calculated to be 105.02 Ω . Thus, the conductivity between the GCE surface and the electrolyte was improved by NiO modified electrode.

Figure 2. (A) EIS of bare GCE (a) and NiO NPs/GCE (b) in 0.1 M KOH 0.05M [Fe (CN)₆]^{3-/4-}. (B) CV's of bare GCE (a) and NiO NPs/GCE (b) in presence of 50μ M H₂O₂ at 0.1 M KOH

The CV curve response for bare GCE (a) and NiO NPs/GCE (b) at 0.1 M KOH containing 50μ M of H₂O₂ with fixed scan rate of 0.05V/s was shown on Fig.2B. NiO NPs/GCE shows excellent cathodic

peak current of -4.54μ A at lower reduction potential of -0.41 V comparing to the bare GCE. This confirms that NiO NPs fabricated GCE shows excellent sensitivity towards the detection of H₂O₂.

4.3. Influence of concentration and scan rate on NiO NPs/GCE

The influence of H₂O₂ concentration were examined by varying the concentration from 25µM to 200µM with a constant scan rate of 0.05V/s were displayed on Fig.3A. The cathodic peak current increased linearly with every consecutive addition of H₂O₂. Additionally, the correlation between cathodic current vs H₂O₂ concentration has shown on Fig.3B. The regression equation for cathodic current was written as y=-0.03195x -3.1723 with correlation coefficient of R²=0.9930. Fig.3C shows the different scan rate curve ranging from 0.02 to 0.2V/s for NiO NPs/GCE in 0.1M KOH consist of 100µM of H₂O₂. The cathodic current increase linearly with increase in scan rate. Fig.3D shows the cathodic peak current obtained for H₂O₂ vs (Scanrate)^{1/2}(Vs⁻¹)^{1/2}. The regression equation for reduction peak was written as y = -12.139x - 3.3237 with correlation coefficient of R² = 0.9979, which shows that reduction of H₂O₂ by NiO NPs/GCE was diffusion-controlled process[16].

Figure 3. Effect of concentration 20 to 200μ M H₂O₂ on NiO NPs/GCE (A) and CVs occurred for NiO NPs/GCE at increasing scan rates (0.02 to 0.2 Vs⁻¹) (C) in 0.1 M KOH containing 100μ M H₂O₂. Linear plot for redox current peak Vs DA concentration (B) and square root of scan rate (D).

4.4. Amperometric detection of H₂O₂ using NiO NPs modified GCE

Fig.4A shows the it-Amperometric response of the NiO NPs/GCE towards sequential addition of H_2O_2 in 0.1M KOH with the applied potential of -0.35 V with 1200 rotation per minute. For every addition of H_2O_2 linear increase of current has observed and the responsive current reach get stabilized within 5s. Fig.4B displays the current versus H_2O_2 concentration and the linear regression equation was found to be $I_{pc}/\mu M = 0.0824[H_2O_2]/\mu M+0.0479$. The linear range for the working concentration was 8.6nM to 433.24 μM with the limit of detection (LOD) 4.28 nM. The LOD was determined using the formula, LOD= $3\sigma_{sb}/S$ where s_b was the standard deviation of 20 blank measurement and S is the sensitivity. So, the developed NiO NPs/GCE shows an excellent sensitivity towards the H₂O₂ compared to previously reported literature (Table-1).

Figure 4. (A) it-Amperometry response for the increase in concentration of H₂O₂ in 0.1 M KOH with respect to NiO NPs/GCE. (B) Linear plot of anodic peak current Vs H₂O₂[µM].

4.5. Interference and Stability of the NiO NPs/GCE

The selectivity and stability are the two vital elements for the electrochemical sensor. The it-Amperometry study was performed to confirm the selectivity of NiO NPs/GCE towards H_2O_2 detection. The selectivity was performed in presence of 5 fold of higher possible interferons like dopamine (DA), uric acid (UA), glucose (Glu), folic acid (FA), ascorbic acid (AA), 3 nitro-1-tyrosine (3NT) were given in Fig.5A it clearly shows that the NiO NPS modified GCE exhibit a particular selectivity towards the H_2O_2 sensing. The working stability of the NiO NPs/GCE were performed in the presence of 0.1M KOH consist of 100µM of H_2O_2 for 15 days and the electrode was stored under 4⁰ C after every use was shown in Fig.5B The electrode showed 93.04% of its initial current response. It shows that synthesized NiO NPs modified electrode shows an excellent stability towards the H_2O_2 detection.

Figure 5. (A) Selective responses of NiO NPs/GCE towards H₂O₂ using it-amperometry technique. (B) Stability of NiO NPs/GCE for continuous usage for 15 days towards 100µM of H₂O₂ in 0.1M KOH.

Table 1. Comparative studies of H₂O₂ detection by NiO NPs/GCE with different electrodes from the earlier reports

Electrodes	Linear range	Limit of	Reference
	(µM)	Detection	
		(µM)	
^a Fe-NGCs/ ^b it-amp	1-5000	0.53	[17]
^c AgNPs/CQDs/ ^b it-amp	0.2-27.0	0.08	[18]
^d HRP/LDH-CMC/ ^b it-	20.6000	12.4	[19]
amp			
^e Ag-mSiO ₂ / ^b it-amp	4-10000	3	[20]
^f AuNPs-NH2/Cu	5-850	1.2	[21]
MOF/ ^b it-amp			
^g H-ERGo/GCE/ ^b it-amp	25-8850;	8.33	[22]
_	8850-28850		
NiO NPs/GCE	8.6nM to	0.00428	This work
	433.24 μM		

^a-M-Nx (M = Fe, Co, Ni, Cu) doped graphitic nano cages.

^b- it-Amperometry

^c-Silver nanoparticles/ carbon quantum dots.

^d-Chitosan/2D layered double hydroxide-carboxymethyl chitosan.

^e-Silver Doped Mesoporous Silica Nanoparticles.

^f-Ammoniated- Au nanoparticles/ Cu-based metalorganic framework modified glassy carbon electrode.

^g-Facile Preparation of Hemin-functionalized Reduced Graphene Oxide Nanocomposite/ Glassy carbon electrode.

4.6. Real sample analysis of NiO NPs/GCE

The practical application for the NiO NPs/GCE was tested using the it-Amperometric technique. Thus, the practical applicability of the of the prepared the sensor was tested in the contact lens cleaning solution. However, these solutions already contained inherent H_2O_2 and hence directly spiked into the supporting electrode and amperometry experiments were performed by following the optimized experimental conditions of lab samples. As the results, NiO NPs/GCE provide the owing found and recovery values, which are tabulated in **table.2**. In the end, the prepared NiO NPs/GCE established as an effective electrode for the practical application.

Table 2. Real sample analysis of H₂O₂ in spiked contact lens cleaning solution on NiO NPs/GCE

Real Samples	Added/nM	Found/nM	Recovery/%	*RSD/%
				(n=3)
Contact lens cleaning solution	50	50	100.84	±2.18
	100	103	102.65	± 2.42
	200	201	100.57	±1.69

* Related standard deviation (RSD).

5. CONCLUSION

In summary, NiO NPs were successively prepared using the simple chemical co-precipitation method and its morphology and purity were confirmed using FE-SEM and XRD Studies. Further, NiO NPs fabricated GCE owing an excellent electrochemical response towards the detection of H_2O_2 . Moreover, the proposed NiO NPs/GCE shows a linear range of 8.6nM to 433.24 μ M with the detection of limit 4.28 nM. Additionally, the NiO NPs/GCE exhibit the higher selectivity and excellent stability towards the H₂O₂ detection. Further, the practical application were performed using the contact lens cleaning solution, which shows the good recovery. To our knowledge, the as synthesized NiO NPs is one of the most effective electrocatalyst for the detection of H₂O₂.

CONFLICT OF INTEREST

The authors declare that there is no Conflict of interest.

ACKNOWLEDGMENTS

This project was supported by the Ministry of Science and Technology (MOST 107-2113-M-027 -005 - MY3), Taiwan (ROC).

References

- 1. S. Kogularasu, M. Govindasamy, S.-M. Chen, M. Akilarasan, V. Mani, Sens. Actuators, B: Chem., 253 (2017) 773-783.
- 2. K. Sakthivel, G. Mani, S.-M. Chen, S.-H. Lin, A. Muthumariappan, V. Mani, *J. Electroanal. Chem.*, 820 (2018) 161-167.
- 3. E. Tamilalagan, M. Akilarasan, S.-M. Chen, T.-W. Chen, Y.C. Huang, Q. Hao, W. Lei, *Ultrason. Sonochem.*, (2020) 105164.
- 4. Y. Sun, K. He, Z. Zhang, A. Zhou, H. Duan, Biosens. Bioelectron., 68 (2015) 358-364.

- 5. A.A. Ensafi, M.M. Abarghoui, B. Rezaei, *Electrochim. Acta*, 190 (2016) 199-207.
- 6. V. Sudha, S.M.S. Kumar, R. Thangamuthu, J. Alloys Compd., 744 (2018) 621-628.
- Y. Xi, D. Li, A. Djurišić, M. Xie, K. Man, W. Chan, *Electrochem. Solid-State Lett.*, 11 (2008) D56-D59.
- S. Kogularasu, M. Akilarasan, S.-M. Chen, T.-W. Chen, B.-S. Lou, *Mater. Chem. Phys.*, 227 (2019) 5-11.
- 9. R. Umamaheswari, M. Akilarasan, S.-M. Chen, Y.-H. Cheng, V. Mani, S. Kogularasu, F.M. Al-Hemaid, M.A. Ali, X. Liu, *J. Colloid Interface Sci.*, 505 (2017) 1193-1201.
- 10. C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem., 19 (2009) 5772-5777.
- 11. C.A. Niedermeier, M. Råsander, S. Rhode, V. Kachkanov, B. Zou, N. Alford, M.A. Moram, *Sci. Rep.*, 6 (2016) 31230.
- 12. J. Hugel, C. Carabatos, J. Phys. C: Solid State Phys., 16 (1983) 6713.
- 13. M.-S. Wu, H.-H. Hsieh, Electrochim. Acta, 53 (2008) 3427-3435.
- 14. H. Xu, M. Zeng, J. Li, X. Tong, RSC Adv., 5 (2015) 91493-91499.
- 15. A. Monshi, M.R. Foroughi, M.R. Monshi, WJNSE, 2 (2012) 154-160.
- 16. A. Muthumariappan, K. Sakthivel, S.-M. Chen, T.-W. Chen, A.M. Elgorban, M.S. Elshikh, N. Marraiki, *New J. Chem*, 44 (2020) 605-613.
- 17. Z.M. Sheng, H. Huang, R.L. Niu, Z.W. Han, R.P. Jia, Sens. Actuators, B: Chem., 305 (2020) 127550.
- 18. M. Jahanbakhshi, B. Habibi, Biosens. Bioelectron., 81 (2016) 143-150.
- 19. J. Yuan, S. Xu, H.-Y. Zeng, X. Cao, A.D. Pan, G.-F. Xiao, P.-X. Ding, *Bioelectrochem.*, 123 (2018) 94-102.
- 20. D. Yang, N. Ni, L. Cao, X. Song, Y. Alhamoud, G. Yu, J. Zhao, H. Zhou, *Micromachines*, 10 (2019) 268.
- 21. W. Dang, Y. Sun, H. Jiao, L. Xu, M. Lin, J. Electroanal. Chem., 856 (2020) 113592.
- 22. Z. Chen, D. Liu, C. Zhu, L. Li, T. You, Sens. Mater., 31 (2019) 1167-1179

© 2020 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).