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Black chromium coating was electrodeposited on brass substrate from choline chloride-ethylene glycol 

(ChCl-EG) deep eutectic solvent (DES), via potentiostatic electrodeposition method. Cyclic 

voltammetry method was used to study the electrochemical reduction behavior of trivalent chromium 

ions (Cr3+) in ChCl-EG deep eutectic solvent. The composition and morphology of coating were 

characterized by X-ray photoelectron spectroscopy and scanning electron microscopy. The results 

showed that the electrochemical reduction of Cr(III) followed a two-step process, Cr(III) to Cr(II), and 

Cr(II) to Cr(0). Furthermore, the results indicated the existence of Cr and O elements in the coating, 

which was composed of chromium oxide, chromium hydroxide, and metallic chromium. Formation of 

the mixed phase was primarily caused by water molecules existing in the ChCl-EG deep eutectic 

solvent. 
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1. INTRODUCTION 

Chromium coating is widely used in surface modification, decorative materials, anti-wear 

materials, and anti-corrosion materials, due to its excellent properties including corrosion and wear 

resistance [1]. Currently, the development of chromium electrodeposition process using hexavalent 

chromium (Cr(VI)) electrolyte is very mature. However, high toxicity and strong carcinogenicity of 

Cr(VI) ions in traditional chromate solution seriously impact the environment and human health. 

Although Cr(VI) is ubiquitous in its use for corrosion protection, countries around the world have 

imposed legal restrictions on the use of Cr(VI) and it is expected that there will be other restrictions in 

future [2]. Under this circumstance, electrodeposition of chromium from an aqueous solution of 

trivalent chromium (Cr(III)) ions with lower toxicity has attracted significant attention of researchers 

and related in-depth research has been conducted. 

http://www.electrochemsci.org/
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Since the beginning of the Cr(III) electrodeposition studies in the United States in 1976, they 

have been fully developed [3,4]. In general, Cr(III) is mainly present in aqueous solution in the form of 

[Cr(H2O)6]
3+ with a regular octahedral structure, and its stability is not conducive to the contact of 

cathode electrons with Cr3+ center [2]. Notably, the high stability of the regular octahedral structure 

directly hinders the electrodeposition of chromium [5]. In order to solve this problem, a series of 

additives such as formic acid, acetic acid, glycine, and other organic additives has been introduced to 

replace the water molecules present in the inner sphere of [Cr(H2O)6]
3+ [5–7]. The results indicate that 

the introduction of the ligands mentioned above can change the structure of [Cr(H2O)6]
3+, making it no 

longer have a symmetrical octahedral structure. Moreover, the ligand field splitting energy is reduced 

and the kinetic stability is also reduced, which is beneficial to the reduction of Cr(III) on the cathode 

surface. However, introduction of these additives still leads to the following problems: (1) difficulty to 

obtain a thick and high-quality coating; (2) narrow working pH range; (3) high susceptibility of 

electrolyte to impurities, and (4) difficulty to store and reuse the electrolyte. 

In recent years, ionic liquids (IL) have attracted extensive research attention due to their unique 

physical properties (low melting point, low vapor pressure, high polarity range, high thermal stability, 

and good solvent properties, etc.) and low toxicity in the field of electrodeposition [8–10]. In these 

researches, the researchers mainly investigated the mixing of metal salts (mainly salts of zinc, 

aluminum, tin, and iron) with quaternary ammonium salts to form ILs [10]. Subsequently, the choline-

based raw materials were confirmed to be suitable for the formation of room temperature ionic liquid 

(RTIL) [11,12]. Researchers believe that RTILs exhibit the potential for large-scale applications, such 

as electrodeposition, batteries [13], and catalysis [14]. The formation of a new generation IL usually 

involves the combination of choline chloride (ChCl) and hydrogen bond donors (HBDs) (e.g. urea, 

renewable carboxylic acids, etc.). Compared to the traditional ILs, the ChCl-based DES has the 

following advantageous characteristics: (1) cost effective; (2) easy to store; (3) easy to prepare (by 

simple mixing of components); and (4) biodegradable and biocompatible [15]. Noteworthy, the 

freezing point of the ChCl-HBD IL is generally lower than that of each component due to the 

interaction between the halide anion and the HBD component. Moreover, the organic salt/HBD molar 

ratio also significantly affects the freezing point of the IL. For example, when the molar ratio of ChCl 

to urea is 1:1 and 1:2, the solidification points of IL are >50 °C and 12 °C, respectively [9,14,15]. 

In order to study the application of ILs to electrodeposition of chromium, electrodeposition of 

Cr(III) was studied in [BMIm][BF4] [16], [BMIm]Br [17], [BMIm]HSO4 [18], ChCl-EG [19], and 

Type-4 RTIL [10]. In these studies, the in-depth research was carried out on the electrochemical 

behavior, nucleation, and growth mechanisms [19,20]. The effects of temperature on electrodeposition 

rate, coating thickness, and corrosion resistance were also systematically analyzed. Noteworthy, the 

chromium coating obtained via electrodeposition method in different ILs are usually non-metallic 

bright. For example, Survilienė et al. [16] and Eugénioa et al. [21] electrodeposited a black chromium 

coating from [BMIm][BF4] solution consisting of a mixture of chromium oxide/hydroxide and metallic 

chromium [16,21]. Further, the black chromium layer with an amorphous submicron particle structure 

was obtained. He et al. also prepared a spherical and micron-grade black chromium coating from 

[BMIm]Br on Cu substrate [17]. He et al. also electrodeposited a nano-chromium coating in a 

[BMIm]HSO4 IL, and the coating consisted of nanocrystalline chromium with a spherical structure 
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[18]. Abbott et al. electrodeposited pale blue/gray amorphous chromium coating from ChCl-

CrCl3·6H2O DES and added Lithium chloride (LiCl) to the IL to obtain a nanocrystalline black 

chromium coating [22]. Nonetheless, in these studies, the discussion about the composition of coating 

and the reasons for its formation was limited. 

In this study, the electrodeposition of chromium was carried out in ChCl-EG deep eutectic 

solvent. The electrochemical reduction behaviors of Cr(III) ions in ChCl-EG DES, phase composition, 

and morphology of chromium coating were analyzed by cyclic voltammetry (CV), X-ray photoelectron 

spectroscopy (XPS) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray 

spectroscopy (EDS) system. 

 

 

 

2. EXPERIMENTAL 

The electrochemical method cyclic voltammetry (CV) was carried out to study the 

electrochemical behaviors of Cr(III) ions using CS350 electrochemical workstation at 333 K. The 

potentiostatic method (−1.35 V vs Pt) was used to perform the chromium electroplating for 30 min 

under stagnant conditions. The brass sheets were used as the substrate in electrodeposition. They were 

polished using up to 2000# grit sandpaper, and degreased with acetone, thoroughly washed with 

absolute ethanol and deionized water successively, and dried for future use. 

In the experiment, a traditional three-electrode cell was used with glassy carbon (GC) electrode 

(3mm diameter, electrochemical reduction experiment) and brass sheet (electrodeposition) as the 

working electrode, Ag|AgCl electrode as the reference electrode, and Pt platinum electrode as the 

counter electrode. The scan rates of CV were 60 mV/s unless special description. Choline chloride 

(C5H14ClNO, 98%, ChCl), ethylene glycol (C2H6O2, EG), and chromium chloride hexahydrate 

(CrCl3·6H2O) were were analytical grade. ChCl and EG were mixed in a molar ratio of 1:1, 1:2, 1:3, 

and 1:4, respectively, and heated in a constant temperature oil bath at 333 K. Chromium chloride 

(CrCl3·6H2O) was dissolved in ChCl-EG and stirred for 12 h to obtain ChCl-EG-Cr(III) electrolyte 

with concentration of 0.4 mol/L.  

The micromorphology and elemental composition of coatings were characterized by SEM 

(VEGA3). The chemical composition and the state of elements were analyzed by XPS via Kratos-Axis 

Ultra System with monochromatic AlKα (1486.71 eV) X-ray radiation (15 kV and 10 mA) and 

hemispherical electron energy analyzer. The base vacuum of the chamber was 2 × 10−9 torr. The survey 

spectra in the range of 0–1208 eV were recorded in 1 eV step for each sample, followed by high 

resolution spectra over different element peaks in 0.1 eV steps, from which the detailed composition 

was calculated. Furthermore, curve-fitting was performed after a Shirley background subtraction by 

non-linear least square fitting using a mixed Gauss/Lorentz function [14,15]. The spectra were 

referenced to the C1s line at 284.8 eV. The sputter rate determined on a 30-nm thick silica (SiO2) 

sample was 3.5 nm min−1. The signal was collected four times for every sample. DDS-320 

conductivity meter and DJS-1 conductivity electrode were used to measure the conductivity of ChCl-

EG deep eutectic solvent at different temperatures. 
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3. RESULTS AND DISCUSSION 

3.1. Electrochemical behaviors of Cr(III) ions in ChCl-EG deep eutectic solvent 

Fig. 1 shows the Voltammograms recorded in ChCl-EG deep eutectic solvent with different 

molar ratios on glassy carbon electrode. A single oxidation peak located at 0.75 V corresponds to the 

oxidation of chloride (Cl−) ions [23]. With the increase in the EG content in the ChCl-EG DES, the 

electrochemical window (EW) of the DES increases from 2.105 to 2.301 V. Compared to the aqueous 

solution (1.23 V) [24], it is apparent that the ChCl-EG DES has a wider EW. With the increase of EG 

content, the current of oxidation peak decreases and the potential shifts to a positive value. This 

phenomenon indicates that the increase of EG inhibits the oxidation of Cl− ion in the DES [23]. 
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Figure 1. CV curves of ChCl-EG deep eutectic solvent with different molar ratios at the GC  electrode 

(333 K, and the scan rate 50 mV. s−1) 

 

The CV curves of Cr(III) ions electrolyte under different molar ratios are shown in Fig. 2. 

Clearly, when the negative sweep reaches −0.5 V, a reduction peak appears, which is labeled as “a”, 

corresponding to Cr(III)→Cr(II) [25]. Further, a reduction peak appears when the negative sweep 

reaches −1.33 V, and it is labeled as “b”, corresponding to Cr(II)→Cr(0) [18]. It was thus concluded 

that the reduction of Cr(III) ions in the ChCl-EG DES followed a two-step process. This indicates that 

the Cr(III) ions undergo a cathodic electrochemical reduction process in ChCl-EG DES to form a 

relatively stable intermediate product. Further, the formation of the divalent chromium Cr(II) 

compound is considered as a control step [26]. Moreover, the slower rate of reduction of divalent 

chromium causes the accumulation of a large amount of Cr(II) on the cathode surface. It is similar to 

the reduction process of Cr(III) ions in aqueous solution [27,28]. 

Fig. 2 also demonstrates that the peak currents of the two reduction peaks increase with the 

increase of the EG content. However, when the molar ratio is more than 1:3, the reduction current 
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decreases, which indicates that too high content of EG inhibits the two-step reduction of Cr(III) ions. 

Therefore, the optimum molar ratio is 1:3. Studies have also shown that the viscosity of ChCl-based 

DESs is closely related to the nature of HBDs [14].  
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Figure 2. CV curves of Cr(III) ions in ChCl-EG deep eutectic solvents with different molar ratios at 

the GC electrode  (333 K, and scan rate 50 mV. s−1) 

 

 

 

 
 

Figure 3. Conductivity curves of ChCl-EG-CrCl3 under different temperatures, at molar ratios of 1:1, 

1:2, 1:3, and 1:4, respectively 
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oxidation peaks at 1:3 and 1:4. The increase in EG content significantly reduces the viscosity of the 

DES, resulting in increased mobility of free species and promoting the reduction of Cr(III) ions. Fig. 3 

exhibits that when the mole ratio is 1:3, the highest conductivity is observed. With the increase of EG 

in electrolyte, the distance between ions becomes smaller and the electrostatic interaction between ions 

increases rapidly. When the concentration of electrolyte solution reaches a certain value, its 

conductivity does not increase with the increase of concentration, but decreases with the increase of 

concentration. Which explains that when the mole ratio is 1:3, the peak value current of reduction peak 

is the largest.  

 

3.2. X-ray photoelectron spectroscopy analysis of chromium coating 

The information about elements existing in the chromate coating and absorbed surface 

contamination can be obtained from the wide scan X-ray photoelectron spectra. Fig. 4 shows the 

typical XPS survey spectra of the black chromium coating obtained from ChCl-EG DES, revealing that 

the chromium coating on brass consists primarily of Cr, O, and C elements. Carbon has been found on 

sample as impurities acquired from handling the sample in air. Hydrogen could also be present, but 

cannot be detected by the XPS measurement [29,30]. 
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Figure 4. Typical XPS survey spectra for the chromate coating carried out on the brass surface 

 

The results of different sputtering times on the surface of the chromium coating indicate that, 

when the sputtering time is 0 s, the content percentages of oxygen and chromium are 78.9 and 21.1%, 

respectively. In contrast, when the sputtering time is 60 s, the content percentages of oxygen and 

chromium are 65.8 and 34.2%, respectively. Thus the results show that after 60 s of sputtering on the 

sample surface, the oxygen content decreases and the chromium content increases, indicating the 

adsorption of water molecules on the surface of the experimental sample [16]. 
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Fig. 5 shows the XPS narrow scanning spectra of Cr2p3/2 and Cr2p1/2 peaks of the chromium 

coating obtained by electrodeposition in ChCl-EG DES after Ar+ ion bombardment for 60 s. Fig. 5 

clearly demonstrates that the Cr2p peak can be deconvoluted into two peaks Cr2p3/2 and Cr2p1/2.  
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Figure 5. Narrow scanning spectra of Cr2p3/2 in the coating: the base line (Red), Cr2O3 (Blue curve), 

Cr(OH)3 (Purple curve), and Cr (Black curve) 
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Figure 6. Narrow scan of O 1s peak in the coating: the base line (Red), Cr2O3 (Blue curve), and 

Cr(OH)3 (Purple curve) 

 

According to the results, the first sub-peak Cr2p3/2 is at 577.1 eV and the other sub-peak 
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Cr2p1/2 is at 586.8 eV. After fitting the Cr2p3/2 peak, three fitted peaks can be obtained with their 

central positions at 574.458, 575.698, and 577.248 eV, respectively [31,32]. The literature studies show 

that the Cr2p3/2 peak position of Cr–O bond in Cr(OH)3 is 577.3 eV, which is close to the position of 

the third fitted peak (577.248 eV) of the plated peak, indicating that the binding state of Cr to the peak 

is Cr(OH)3 [20,33]. Moreover, the peak position of Cr2p3/2 in Cr2O3 is 576.3 eV. From the numerical 

perspective, the binding state of Cr corresponding to the second fitting peak (575.698 eV) of Cr2p3/2 

peak is close to that of Cr in Cr2O3, indicating that the binding state of Cr corresponding to the second 

fitting peak of Cr2p3/2 peak is Cr2O3. The peak position of elemental Cr is 574.4 eV, which 

corresponds to the first fitted peak in the figure. 

Fig. 6 exhibits the XPS narrow scanning spectra and fitting peaks of O1s spectra. The O1s peak 

can be fitted into two peaks. The literature study [33] indicates that the peak at 530.77 eV is O(II) in 

Cr2O3 and the peak at 532.17 eV is O(II) in Cr(OH)3. 

 

3.3. Micro-morphology and elemental composition 

Fig. 7 shows the micro-morphology and elemental composition of the black chromium coating 

obtained from ChCl-EG DES. Fig. 7a shows the existence of scattered cracks on the surface of the 

coating and a non-uniform distribution is exhibited. Elemental composition and distribution indicate 

that the chromium coating is mainly composed of chromium and oxygen elements, and the two 

elements are evenly distributed in the plating layer. 

 

 
 

Figure 7. (a) SEM images of chromium deposit onto the surface of brass after potentiostatic deposition 

(−1.35 V vs Pt, 333 K and 30 min) from DES and (b, c) the elemental composition of the 

coating 

 

 

4. DISCUSSION 

Regarding the problem associated with the multi-step mechanism of the chromium deposition 

process, Vashchenko et al. [34] proposed the possibility of simultaneous transfer of three electrons. 

They further discussed the direct transfer of the three electrons during chromium electrodeposition 

from the acetic acid complex of Cr(III) without forming an intermediate. Subsequently, a multi-step 

reaction scheme for Cr(III) ion reduction was proposed, which is also widely accepted by most 
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researchers. Based on this, it is thus believed that the rate of the chromium deposition reaction depends 

on the concentration of the reactants that are not immediately involved in the overall reaction. 

Furthermore, Watson et al. [35] pointed out that it takes time for Cr(II) to be reduced to Cr(0), which 

leads to the accumulation of Cr(II) in the cathode diffusion layer. This accumulation makes the step of 

Cr(II)→Cr(0) to be the control step, and the formation of the Cr(II) polymer or oligomer species 

interferes with the deposition process. Therefore, if the content of Cr(II) cannot be controlled, it can 

lead to continuous deposition failure. 

The electrodeposition of Cr(III) in aqueous solution can be divided into the following three 

parts: 

(1) Incomplete reduction of Cr(III) 

Cr3+ + e− → Cr2+  (1) 

(2) Electrodeposition of chromium metal 

Cr3+ + 3e− → Cr  (2) 

Cr2+ + 2e− → Cr  (3) 

(3) Hydrogen evolution reaction [4] 

2H3O
+ + 2e− → H2 + 2H2O  (4) 

2H2O + 2e− → H2 + 2OH−  (5) 

According to literature [6], the results of ultraviolet–visible (UV—Vis) spectroscopy of Cr(III) 

ion-ChCl-EG DES indicate that Cr(III) generally exists in the form of [Cr(H2O)5Cl]2+, [Cr(H2O)4Cl]+, 

and [Cr(H2O)3Cl]. The addition of Cl− ions can destroy the stability of the initial chromium compound 

[Cr(H2O)6]
3+ by prolonging the Cr–H2O bond [2,5]. In the [Cr(H2O)6]

3+ complex, the Cr–H2O bond 

length was 1.99 Å. The elongation of Cr–H2O bond due to the existence of Cl− ions in Cr-complex is 

beneficial to the fracture of d-orbital of Cr3+ and promotes the formation of intermediates during the 

Cr(III) reduction reaction [40]. 

However, the chromium chloride used in the experiment has six crystal waters, and a part of 

Cr(III) remains in the DES in the form of [Cr(H2O)6]
3+ [36]. According to the valence bond theory, 

[Cr(H2O)6]
3+ is an internal orbital coordination compound. During the electrodeposition process, 

electrons on the cathode cannot enter the inner orbit to replace H2O because there is no remaining d-

orbital to immediately participate in the reaction [26]. This makes [Cr(H2O)6]
3+ extremely stable, and it 

can only be reduced when its potential is more negative than the water reduction potential. This results 

in hydrogen evolution and a higher pH on the surface of the electrode near the electrode layer than in 

the bulk electrolyte [37]. When pH > 4, hydration [Cr(H2O)6]
3+ undergoes a hydroxyl bridged oxygen, 

which causes Cr(III) to polymerize into a long-chain polymerized complex gel [38]. The colloidal 

precipitate is easily adsorbed on the cathode surface, preventing further reduction of chromium ions. 

Furthermore, an increase in the pH near the cathode causes the formation of chromium hydroxide on 

the substrate surface, resulting in the appearance of a black coating [39]. Noteworthy, adsorption of 

poorly soluble chromium hydroxide on the electrode surface also blocks the local current density of 

chromium reduction [40]. 

Angulo et al. [41] also emphasized that some chromium hydroxide compounds are involved in 

the multi-step electrochemical reaction of Cr(III) electroreduction. Danilov et al. [40] believed that the 

presence of hydroxide ions is one of the causes of the decrease in the efficiency of electrodeposition 



Int. J. Electrochem. Sci., Vol. 15, 2020 

  

8969 

current. The increase in pH of the electrode surface is the direct cause of OH− production, thus 

generating hydroxide in the process of electrodeposition. This indicates that the water molecules in the 

first ligand sphere of the complex chromium ion are first replaced by an OH− group after complex 

changed from Cr(III) to Cr(II), as shown in equations (6) and (7). Then, transformation into Cr(0) 

complex occurs, as shown in equation (8). Finally, chromium coating is formed, as shown in equation 

(9). 

[Cr(III)(H2O)5Cl]2+ + e− → [Cr(II)(H2O)5Cl]+ (6) 

[Cr(II)(H2O)5Cl]+ → [Cr(II)(H2O)4(OH)Cl] + H+  or   

[Cr(II)(H2O)5Cl]+ + OH− → [Cr(II)(H2O)4(OH)Cl] + H2O (7) 

[Cr(II)(H2O)4(OH)Cl] +2e− → [Cr(0)(H2O)4(OH)Cl]2− (8) 

[Cr(0)(H2O)4(OH)Cl]2− → Cr0 + 4H2O + OH− + Cl− (9) 

The reduction mechanism of chromium electrodeposition in ChCl-EG DES was proposed as 

revealed in equations (6) to (9). Moreover, the XPS results show that the coating is composed of Cr(0), 

Cr2O3, and Cr(OH)3. A small amount of OH− appears in the IL, and OH− then combines with Cr3+ to 

form Cr(OH)3, which is further dehydrated to produce Cr2O3. 

 

 

 

5. CONCLUSION 

Black chromium coating with some cracks was prepared in choline chloride-ethylene glycol 

(ChCl-EG) deep eutectic solvent via electrodeposition method. With the increase in the content of EG, 

the electrochemical window of ionic liquid increased from 2.105 to 2.301 V, and the oxidation of 

chloride in ionic liquid was inhibited. The reduction of Cr(III) ions followed a two-step process: 

Cr(III)→Cr(II)→Cr(0). The chromium coating was found to consist of Cr, Cr(OH)3, and Cr2O3. 

Furthermore, a systemic reaction process was proposed to explain the reduction mechanism of 

chromium electrodeposition in ChCl-EG deep eutectic solvent. 
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