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Eight (8) pyrazine derivatives were tested as mild steel corrosion inhibitors in a simulated oil field 

acidizing environment. Immersion tests and DFT calculations were adopted for the study. Immersion 

tests were carried out at 0.2 wt. % inhibitor concentration at 25oC for a total duration of 24 h. The results 

showed that all the pyrazine derivatives tested protected the steel to various extents in the acid medium. 

Pyrazine carboxamide (Pyrazine E) exhibited the highest inhibition efficiency among the pyrazine 

derivatives investigated. The resulting molecular descriptors obtained from DFT calculations were 

correlated with the experimental inhibition efficiency to develop QSAR model. Multiple linear 

regression was utilized to correlate the inhibition efficiency with the molecular descriptors at a 95% 

confidence interval. This work revealed that the inhibition efficiencies of the studied pyrazine molecules 

were influenced by their ELUMO, dipole moment (DM) and the molecular volume (MV).  Based on the 

QSAR model developed, four new pyrazine derivatives were designed, and their inhibition efficiencies 

predicted.  
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1. INTRODUCTION 

The selection of corrosion inhibitors is mostly done through trial and error in synthesis and 

experimentation. It is vital to be able to investigate mechanisms of corrosion inhibition and the effect of 

the various groups attached using theoretical inhibition approach. This will provide a theoretical 

guidance for designing corrosion inhibitors. Organic compounds containing heteroatoms such as N, S, 

or O are effective corrosion inhibitors for many metals and alloys [1]. Addition of these organic 

molecules to the corrosive media helps in impeding corrosion [2]. The molecules normally form 

complexes by adsorbing to the metal surface [3–5].  
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Corrosion inhibitors protect the metal surface through molecular interaction leading to physical 

or chemical adsorption [6]. Heterogenous atoms with triple bonds and aromatic rings can form good 

coordination bonds with metal surfaces. The higher the strength of the coordination bond, the higher the 

inhibition efficiency. The drive toward the use of eco-friendly corrosion inhibitors led to numerous 

studies focused on heterocyclic compounds and those containing nitrogen are considered to be effective 

inhibitors [7–11]. Heterocyclic compounds containing nitrogen atoms in their structure such as 

quinoline, indole, pyridine, benzimidazole, pyridine and their various derivatives  have been proven as 

efficient steel corrosion inhibitors [12–15].  

Pyrazine is an important group of heterocyclic compounds [16,17] due to its diverse uses. 

Pyrazine and its derivatives finds wide applications in organic photovoltaics and organic light emitting 

diodes [18,19], flavoring in food [20,21], fragrances [22], pharmaceutical [23,24], agro-based chemicals, 

ligands [25] and anti-diabetic drugs [26]. Information regarding antifungal, antituberculotic and 

cytotoxicity of pyrazines have been widely reported [27–31]. Various pyrazine derivatives have been 

shown to be effective corrosion inhibitors in acid environment by several authors [32,33]. 

Notwithstanding these studies, specific mechanisms have not been supported experimentally. This 

difficulty in obtaining experimental evidence is often as a result of the complexity of the real 

environmental conditions surrounding the inhibitor, complications in extracting information regarding 

inhibitor and metal interface on atomic level experimentally and also due to the very low concentrations 

of these inhibitors utilized in experimental studies (in ppm levels) [34]. 

To address these issues, quantum chemical calculations can be very useful in explaining the 

corrosion inhibition mechanisms at the atomic level. Quantum chemical calculation was shown to be a 

powerful tool in corrosion inhibition studies and has been widely utilized in studying reaction 

mechanisms [35–41]. The relationship that characterizes the structure properties of molecules and their 

activities on a quantitative basis is structure–activity relationship (QSAR). QSAR does not only correlate 

and predict the physical and chemical properties of the molecules but also plays a significant role in their 

effective evaluation. The use of QSAR in corrosion inhibition study has been reported by several authors 

[42–47]. Molecular descriptors have an advantage since they are not closely restricted to related 

molecules, they are obtained without recourse to experimentation.  

The aim of this work is to study the correlation between corrosion inhibition efficiency and 

molecular descriptors of 8 pyrazine derivatives. Weight loss measurements were used to evaluate the 

experimental corrosion efficiencies of the molecules.  Quantum chemical study of 8 pyrazine molecules 

was performed at B3LYP/6-31G** level theory to evaluate the various molecular parameters of the 

molecules. The molecular parameters obtained were used to develop QSAR model for predicting the 

corrosion inhibition efficiency of molecules based on the pyrazine backbone. This information was 

further used to design corrosion inhibitors based on pyrazine moiety and their corrosion inhibition 

efficiency predicted based on the QSAR model developed.  
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2. EXPERIMENTAL DETAILS 

2.1. Materials, Reagent and Inhibitors 

 
 

Figure 1. Names, abbreviations and 2 D-molecular structures of the investigated eight (8) pyrazine 

molecules. 

 

The weight loss coupons were cut from a typical API X60 steel pipeline for this work. The 

coupons were cut into the dimension of 3 × 3 cm. Grinding and polishing were accomplished by utilizing 

emery papers with grit sizes ranging from 120, 240,320, 400, 600 to 800. After grinding and polishing, 

the coupons were cleaned ultrasonically using acetone. The coupons were finally dried in air prior to 

immersion. Analytical grade HCl (purity-37 %) obtained from Sigma Aldrich was diluted to 15 % HCl 

acid with distilled water. All the eight (8) pyrazine derivatives obtained from Sigma Aldrich  and 

designated as A-H were used for this study. 0.2 wt % of each pyrazines were prepared and used for the 

experiment. The molecular structures of the pyrazine molecules are shown in Fig. 1. 
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2.2. Immersion Tests (Weight Loss)  

Weight loss tests were carried out on X60 steel specimens in 15 % HCl without and with 0.2 wt 

% concentration of each pyrazine molecules immersed up to 24 h at 25oC. Weighing of each specimen 

was carried out before immersion. The coupons were retrieved after 24 h, immersed in 1 M HCl for 15 

s to get rid of any corrosion products, washed thoroughly, dried in air, and re-weighed. The corrosion 

rates were evaluated in mils per year (mpy) and mm per year (mm/y) as shown in the following equations 

[48]. 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ( 𝑚𝑝𝑦) =
3.45×106×𝑊

𝐷×𝐴×𝑇
                                                                 (1) 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝑚𝑚/𝑦) =
𝑊×8.76×104

𝐴×𝑇×𝐷
            (2) 

Where W is weight loss in (g), A is the initial exposed area of the coupon (cm2), T is the exposure 

time in hours (h) and D is the density of the metal coupon (7.86 g/cm3).  

Corrosion inhibition efficiency which gives the measure of the effectiveness of the inhibitor was 

calculated using equation 3 [49]: 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, %𝐼𝐸 =  
𝐶𝑟𝐵 −𝐶𝑟𝐼

𝐶𝑟𝐵
 × 100     (3) 

Where 𝐶𝑟𝐵 is the corrosion rate (mpy) without inhibitor and 𝐶𝑟𝐼 is the corrosion rate (mpy) with 

inhibitor present. 

 

2.3. Computational details 

Density functional theory (DFT) using B3LYP with 6-31G** basis set method available in 

Spartan 14 software package was utilized to carry out geometry optimization of the eight pyrazine 

molecules investigated. The DFT calculations were conducted in the presence of water since corrosion 

takes place in aqueous phase.  

DFT is an authentic and powerful tool for analyzing mechanisms during inhibitor-surface 

interactions. Based on the frontier molecular orbital theory, the chemical reactivity of a chemical specie 

is as a result of the interaction between the lowest unoccupied molecular orbital (LUMO) and the highest 

occupied molecular orbital (HOMO) of the reacting species. The parameter associated with the electron 

donating ability in the quantum calculations is known as energy of the highest occupied molecular orbital 

(EHOMO) while the  molecular orbital which is associated with the ability of the molecule to accept 

electrons is known as the energy of the lowest unoccupied molecular orbital (ELUMO).  

The corrosion inhibition efficiency was measured experimentally from weight loss test. The 

energy gap, ΔE (ELUMO – EHOMO), is a critical descriptor and it shows the reactivity of the inhibitor 

molecules. The distance between two bonded atoms and the product of the charge on the atoms is known 

as the dipole moment (DM). The dipole moment gives a measure of the polarity of a polar covalent bond. 

It is widely used in describing the polarity of molecules. The measure of solubility or the partitioning of 

an organic compound betwwen a polar and a non-polar phases is termed LogP. Qualitative chemical 

concepts such as softness (s), global electrophilicity (ω), chemical hardness (ƞ), electronegativity (χ) and 

local reactivities were also obtained from DFT calculations.  
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The chemical potential and electronegativity are related as presented in equation 4 [50]: 

  

 𝜇 =
𝑑𝐸

𝑑𝑛 
 𝑉(𝑟) =  −𝜒 =  −

𝐼𝑃+𝐸𝐴

2
=

𝐸𝐻𝑂𝑀𝑂+ 𝐸𝐿𝑈𝑀𝑂

2
,     (4)  

Where E is the total energy, 𝜇 is the chemical potential, n is the number of electrons and V(r) is 

the external potential of the system. The second derivative of energy with respect to n is the chemical 

potential. This measures the reactivity and stability of the molecule and it is defined in DFT according 

to equation 5 [51,52]. 

𝜂 =
𝑑2𝐸

𝑑2𝑛 
 𝑉(𝑟) =  

𝐼𝑃−𝐸𝐴

2
=

𝐸𝐿𝑈𝑀𝑂− 𝐸𝐻𝑂𝑀𝑂

2
      (5) 

Where EA is electron affinity and IP is ionization potential.  

Softness (s) and global electrophilicity index (𝜔) are calculated as presented in equations 6 and 

7, respectively [53–55]. 

𝑠 =  
1

2𝜂
           (6) 

𝜔 =  
𝜇2

2𝜂
          (7) 

The number of electrons transferred between the metal surface and the molecule (ΔN) is 

evaluated from equation 8 [56]. 

∆𝑁 =
𝜒𝑚𝑒𝑡𝑎𝑙−𝜒𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

2(𝜂𝑚𝑒𝑡𝑎𝑙+ 𝜂𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒)
=

∅−𝜒𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

2𝜂𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
      (8) 

Where ∅ is work-function (4.82 eV) [50,51] and is taken as the electronegativity of the metal. 

The chemical hardness of the metal is neglected because the chemical hardness of bulk metals is related 

to the inverse of their density of states at the Fermi level which is very small and χ is the electronegativity. 

 

2.4. Quantitative Structural Activity Relationship (QSAR) 

The structure-activity relationship of molecular descriptors from the quantum chemical 

calculations of the various pyrazine molecules was developed utilizing multiple linear regression. The 

quality of the model in this analysis relies on the prediction ability and fitting. Various quantum chemical 

descriptors such as EHOMO, ELUMO, dipole moment, log P, molecular volume etc., were computed and 

used for correlation with the corrosion inhibition efficiencies of the eight pyrazines determined 

experimentally. The relationship to evaluate the correlation between observed activity and molecular 

descriptors was sought using an equation. Multiple linear regression analysis is frequently used to 

correlate the quantum molecular descriptors with experimental inhibition efficiency. The obtained data 

was categorized into various sets to be able to formulate a QSAR model and the workability of the model. 

%𝐼𝐸 =  𝛼 +  𝛽1𝑋1 +  𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ … … . . 𝛽𝑛𝑋𝑛    (9) 

Where 𝛼 and 𝛽 are regression constants determined through multiple linear regression analysis, 

𝑋1, 𝑋2, 𝑋3,…… 𝑋𝑛 are quantum chemical index characteristics of the various molecules. 

 It is vital to determine the coefficient of correlation of the molecular descriptors in order to 

develop a QSAR model with good reliability. Step-wise regression analysis was utilized for searching 

and developing the best QSAR models to establish the important descriptors that were involved in 

inhibiting corrosion. Two-tailed t-tests (t -statistics) was used to evaluate the significance of each 

parameter in a stepwise manner. The overall significance of the model was tested using F-test. Other 
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statistical parameters such as squared correlation adjusted coefficient (R2
adj), P-value and squared 

correlation coefficient (R2), were used to validate the model at 95% confidence interval. The step-wise 

regression analyses were carried out using XLSTAT, statistical software for Excel 2013. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Weight Loss measurements 

Corrosion rates and inhibition efficiencies of the eight (8) investigated pyrazines in 15 % HCl 

without and with 0.2 wt% concentration after immersion of the steel coupons for 24 h at 25oC are 

presented in Table 1.  

 

Table 1. Weight loss results for X60 steel in 15 % HCl with and without different pyrazines derivatives 

at 25 oC after 24 h of immersion at an inhibitor concentration of 0.2 wt%. 

 

Inhibitor Weight Loss 

(g) 

             Corrosion Rate 

mpy                              mm/y 

Inhibitor 

Efficiency, % IE  

Blank 0.2377 144.90 3.6794           -  

PYR  A 0.1839 112.11 2.8466 22.63 

PYR  B 0.1611 98.21 2.4937 32.22 

PYR  C 0.1234 75.23 1.9101 48.08 

PYR  D 0.1376 83.88 2.1299 42.11 

PYR  E 0.0838 51.12 1.2979 64.72 

PYR  F 0.1064 64.86 1.6470 55.24 

PYR  G 0.1340 81.69 2.0742 43.62 

PYR  H 0.1798 109.61 2.7832 24.35 

 

The results show that all the derivatives of pyrazine studied protected the steel to various extents. 

Pyrazine E exhibited the highest inhibition efficiency of 64.72% and also has the lowest corrosion rate 

of 51.12 mpy as compared to the blank (15% HCl) with a value of 144.90 mpy.  On the other hand, 

pyrazine A was the worst inhibitor with an inhibition efficiency of 22.63%.  The high inhibition 

efficiency of Pyrazine E is due to the presence of amide group –CO-NH2- on the pyrazine ring as 

compare to pyrazine A which only has two methyl groups -CH3 attached to the pyrazine ring. This amide 

group induces high polarity and increase the molecular volume of pyrazine E which can adsorbed more 

strongly to the steel surface than pyrazine A.  

 

3.2. Molecular Descriptors 

Molecular parameters of the molecules under investigation give a useful insight into the reactivity 

and selectivity of the molecules.  These parameters provide useful information that can be utilized in 

comparing reactivity trends among different molecules. It is also important in understanding metal 
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surface - inhibitor the interactions [57]. The useful molecular descriptors identified in this study are as 

follows; EHOMO, the energy of the highest occupied molecular orbital, ELUMO, the energy of the lowest 

unoccupied molecular orbital, ΔE, the energy difference between ELUMO and EHOMO, the dipole moment 

(DM), chemical potential (μ), chemical hardness (ղ), softness (s), global nucleophilicity (ɷ) and 

electronegativity (χ) etc,. Information regarding the areas of the molecule with the most energetic 

electrons is given by the highest occupied molecular orbital (HOMO) while information regarding areas 

in the molecule that exhibits the highest tendency to accept electrons are given by the lowest unoccupied 

molecular orbital (LUMO). The HOMO and LUMO orbitals overlay are illustrated in Figure 2. The 

results from Fig. 2 indicate that the HOMO and LUMO regions for all the eight pyrazines investigated 

are located on the pyrazine ring. This indicates that the pyrazine ring is the active site for the interaction 

between the molecules and the steel surface, 
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Figure 2. The highest occupied molecular orbital and the lowest unoccupied molecular orbital for the 

eight pyrazine molecules A-H investigated.  

 

 

 

 

 

Figure 3. Quantum chemical parameters and descriptors (a) EHOMO, (b) ELUMO (c) ∆E, (d) dipole moment 

(e) ∆N and (f) hardness obtained using DFT at B3LYP/6-31G** level of theory for the eight 

pyrazine molecules A-H investigated.  

 

The ability of the molecule to bind with the surface of the metal is expected to increase with 

increasing HOMO and decreasing LUMO energy values [58–60]. The higher the value of EHOMO, the 

more a molecule can donate its electrons. The EHOMO values evaluated at the B3LYP/6-3G level of theory 
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for the investigated pyrazines is illustrated in Table 2 and Fig. 3a, respectively. Corrosion efficiencies 

of the molecules obtained from weight loss experiment are presented in Table 2, the trend in the EHOMO 

values of the molecules does not agree with experimentally determined corrosion inhibition efficiencies 

of the pyrazine corrosion inhibitors investigated.  

ELUMO gives information about the electron accepting ability of a molecule. The lower ELUMO, 

the greater the ability of the molecule to accept electrons. ELUMO values obtained are presented in Table 

2 and Fig. 3(b). It can be observed that trends in ELUMO values of the molecules are not in agreement 

with the observed inhibition efficiency [54,55].  

 

Table 2. Quantum Chemical Descriptors for Pyrazine Derivatives Investigated 

 

Parameters A B C D E F G H 

Energy (au) -342.97 -701.83 -641.44 -802.57 -433.05 -452.90 -741.16 -536.13 

EHOMO (eV) -6.71 -6.22 -7.20 -7.04 -6.90 -7.01 -6.10 -6.49 

ELUMO (eV) -1.38 -1.49 -2.09 -1.58 -1.86 -2.09 -1.45 -1.20 

ΔE (eV) 5.33 4.73 5.11 5.46 5.04 4.92 4.65 5.29 

η 2.66 2.36 2.55 2.73 2.52 2.46 2.32 2.64 

s 0.18 0.21 0.19 0.18 0.19 0.20 0.22 0.19 

µ -4.05 -3.86 -4.65 -4.31 -4.38 -4.55 -3.78 -3.85 

χ 4.05 3.86 4.65 4.31 4.38 4.55 3.78 3.85 

ω 3.07 3.14 4.22 3.40 3.81 4.21 3.06 2.79 

ΔN 0.15 0.20 0.03 0.09 0.08 0.05 0.22 0.18 

Dipole 

Moment (D) 

0.01 2.02 2.78 2.07 5.23 2.54 1.86 1.81 

LogP -0.24 0.52 -0.68 0.66 -1.31 -0.66 0.72 1.79 

Polarizability 50.10 50.33 51.74 51.18 49.72 49.51 51.84 55.31 

Molecular 

Volume (Å3) 

123.16 124.22 142.73 136.79 117.55 114.59 142.56 187.22 

Molecular 

Area (Å2) 

144.98 146.01 167.47 159.86 139.52 136.23 166.43 212.68 

%IE 22.63 32.22 48.08 42.11 64.72 55.24 43.62 24.35 

 

The energy difference between the HOMO and the LUMO (ΔE) gives information about the 

overall reactivity of a molecule; the smaller the ΔE value, the greater the reactivity of the molecule. The 

trends in the ΔE values for the molecules studied as presented in Table 2 and Fig. 3c, indicate that 

pyrazine D (5.46 eV) should have been the least reactive compound while pyrazine G (4.65 eV) the most 

reactive molecule [61–64]. As a result, the highest interaction between the metal surface and the 

molecule expected should have been pyrazine G. The overall trend in the ELUMO, ΔE, and EHOMO values 

of these molecules indicate no correlation with the trend in the corrosion inhibition efficiency.  

The dipole moment indicates the degree of polarity of the molecule which is a good indicator of 

reactivity [41,65,66]. Clearly, there is no correlation between the observed efficiency and the dipole 
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moment of the molecules studied as illustrated in Table 2 and Fig. 3d. The ability of the molecule to 

donate electrons is given by the number of electrons transferred (ΔN). The higher the value of ΔN is, the 

greater the tendency of a molecule to donate electrons. In the case of corrosion inhibitors, a higher ΔN 

implies a greater interaction between the molecule and the metal leading to an increase in the efficiency 

[67–69]. This is, however, not the case in this work; the trend in the ΔN values has no correlation with 

the experimentally obtained corrosion inhibition efficiency for the pyrazine derivatives investigated. 

Similarly, there is no correlation in the hardness (Table 2 and Fig. 3e), molecular volume, molecular 

area, logP, and the experimental values of the corrosion inhibition efficiencies for the eight (8) pyrazine 

derivatives as shown in Table 2. 

 

3.3. QSAR Modeling 

In it apparent from the quantum chemical calculation data from the previous section that there is 

lack of correlation between each molecular descriptor with the experimentally determined inhibition 

efficiencies of the pyrazines. In order to obtain a trustworthy model of efficiency - structure relationship 

on corrosion inhibition, a composite index of more than one parameter should be used to set up a 

quantitative structure-activity relationship known as QSAR. The significance of the developed QSAR 

model will depends largely on the fitting and its ability to predict the corrosion inhibitor efficiency 

[1,51,70,71].  

A step-wise process was adopted in developing the QSAR for this study. In the stepwise process, 

the correlation coefficients of all the descriptors were determined individually using the linear regression 

as presented in Table 3. The descriptor with the largest absolute t-value was selected and the descriptor 

associated with the model is selected as the best single predictor of inhibition efficiency in the first step. 

Dipole moment (DM) was the only descriptor that was significant in predicting the corrosion inhibition 

efficiency independently. To be able to get an appropriate model that is significant in predicting the 

inhibition performance, an attempt was made to form a QSAR model by combining the various 

molecular parameters. The regression equation obtained at this stage is given as 

% 𝐼𝐸 = 21.71 + 8.69 𝐷𝑀        (10) 

In the second step, all possible two-predictor regression models with DM as one of the 

independent variables in the model was examined. Here the other descriptors in conjunction with DM 

that produces the largest absolute value of t in the model are determined. The equation of the model at 

this stage is given as; 

% 𝐼𝐸 = −6.30 + 5.97 𝐷𝑀 − 20.86 𝐸𝐿𝑈𝑀𝑂      (11) 

At this stage, the t values of DM and ELUMO are examined and the significance of the model is as 

illustrated in Table 4. 

Having gone through several selections and t-tests to ascertain the significance, a QSAR model 

was obtained involving Dipole moment (DM), ELUMO (eV), and Molecular Volume (Å3) that predicts 

the corrosion inhibition efficiency as presented in Table 5. The process ends when the t-value obtained 

becomes insignificant after adding new descriptors. The obtained regression model is illustrated in 

equation 12. 
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%𝐼𝐸 = 14.288 + 6.185𝐷𝑀 − 16.464𝐸𝐿𝑈𝑀𝑂 − 0.102𝑀𝑉   (12) 

Where ELUMO (eV) is the energy of the lowest unoccupied molecular orbital, DM is the dipole 

moment (Debye) and MV (Å3) is the molecular volume. The model was utilized to predict inhibitor 

efficiency of new designed pyrazine derivatives. The predicted efficiency was compared to the efficiency 

obtained experimentally as presented in Table 6 and Fig. 4. 

 
Figure 4. The experimental inhibition efficiency versus predicted data according to equation (12) 

 

3.4. Test Set 

Based on the data and information from the training set, a set of new molecules were designed, 

and the molecular descriptors calculated [72]. The QSAR model obtained from the training set was then 

utilized in predicting corrosion inhibition efficiency of the new set of molecules. The QSAR model 

obtained from the training set indicates that the inhibition efficiency of pyrazines is dependent on Dipole 

moment (DM), ELUMO (eV), and Molecular Volume (Å3). The molecular structures of the new molecules 

designed are illustrated in Figure 5. The molecular descriptors calculated using the B3LYP/6-31G** 

level of theory are presented in Table 7. As illustrated in Table 7, it was observed that the corrosion 

inhibition efficiency increases with increasing dipole moment. This phenomena has been observed by 

various authors [17,73–75], even though there has not been any consensus as to the effect of dipole 

moment on the inhibition efficiency entirely [76–78].  
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Figure 5. 2 D-molecular structures of the designed molecules. 

 

Dipole moment can be valuable in predicting the adsorption mechanism [79]. The electrostatic 

interaction between the charged centers of the molecule and that of the metal surface results in a positive 

dipole interaction of the metal surface and the molecule. In this light, the positive coefficient of dipole 

moment obtained suggests that the adsorption is through physical mechanism [77,78,80].  

 

 

 

4. CONCLUSION 

In conclusion, the corrosion inhibition performances of eight different pyrazine molecules were 

investigated using a combined weight loss experiment and DFT calculations. Step-wise regression 

analysis was used to correlate the molecular parameters obtained from DFT calculations to the corrosion 

inhibition efficiency obtained from weight loss test. QSAR model was developed that correlates the 

dipole moment, molecular volume and ELUMO to the inhibition efficiency obtained from weight loss with 

90% correlation. The QSAR model was utilized to predict the corrosion inhibition efficiency of test 

molecules designed with pyrazine backbone. 
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